Impacto de la inteligencia artificial en la optimización de procesos y toma de decisiones empresariales

Autores/as

DOI:

https://doi.org/10.47185/27113760.v6n1.182

Palabras clave:

Inteligencia artificial, Optimización de procesos, Toma de decisiones, Machine Learning, Big Data

Resumen

El estudio examina el impacto de la inteligencia artificial en la optimización de procesos y la toma de decisiones empresariales, destacando su papel en la transformación digital y la sostenibilidad. Se basa en una revisión sistemática de literatura siguiendo la metodología PRISMA, utilizando bases de datos como Scopus. Los hallazgos indican que la IA potencia la eficiencia operativa mediante machine learning, Big Data y otras tecnologías avanzadas, permitiendo la automatización, el análisis predictivo y la mejora en la gestión del conocimiento. Además, se observa un crecimiento exponencial en la investigación académica sobre IA, impulsado por su aplicación en sectores clave como la manufactura, el comercio minorista, la industria farmacéutica y financiera. Sin embargo, su implementación plantea desafíos en gobernanza, calidad de los datos y ética en la toma de decisiones, lo que resalta la necesidad de desarrollar marcos regulatorios que garanticen su uso responsable. En conclusión, la inteligencia artificial se ha consolidado como una herramienta estratégica para la optimización de procesos y la toma de decisiones empresariales, generando beneficios tangibles en eficiencia y sostenibilidad, aunque requiere enfoques estructurados para su integración efectiva. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Surmi, A., Bashiri, M., & Koliousis, I. (2022). AI based decision making: combining strategies to improve operationalperformance. International Journal of Production Research, 60(14), 4464–4486. https://doi.org/10.1080/00207543.2021.1966540

AlNuaimi, B. K., Kumar Singh, S., Ren, S., Budhwar, P., & Vorobyev, D. (2022). Mastering digital transformation: The nexus between leadership, agility, and digital strategy. Journal of Business Research, 145, 636–648. https://doi.org/10.1016/j.jbusres.2022.03.038

Baabdullah, A. M. (2023). The precursors of AI adoption in business: Towards an efficient decision-making and functional performance. International Journal of Information Management, 75, 1–26. https://doi.org/10.1016/j.ijinfomgt.2023.102745

Bork, D., Ali, S. J., & Dinev, G. M. (2023). AI-Enhanced Hybrid Decision Management. Business and Information Systems Engineering, 65(2), 179–199. https://doi.org/10.1007/s12599-023-00790-2

Boy Barreto, A. M., Osorio Arrascue, E. D., Rodríguez Alegre, L. R., & López Padilla, R. del P. (2024). Artificial intelligence in decision making: ethical implications and efficiency. Revista Venezolana de Gerencia, 29(11), 342–355. https://doi.org/10.52080/rvgluz.29.e11.20

Carlos Alberto Santamaría Velasco, Diana Montoya Ojeda, Nancy Elizabeth Chariguamán Maurisaca, & Jenny Patricia Quiñónez Bustos. (2025). Optimizing Business Decision-Making Using Intelligent Information Systems A Quantitative Approach. Journal of Information Systems Engineering and Management, 10(16), 371–378. https://doi.org/https://doi.org/10.52783/jisem.v10i16s.2622

Chen, D., Esperança, J. P., & Wang, S. (2022). The Impact of Artificial Intelligence on Firm Performance: An Application of the Resource-Based View to e-Commerce Firms. Frontiers in Psychology, 13, 1–14. https://doi.org/10.3389/fpsyg.2022.884830

Dalal, S., Lilhore, U. K., Simaiya, S., Radulescu, M., & Belascu, L. (2024). Improving efficiency and sustainability via supply chain optimization through CNNs and BiLSTM. Technological Forecasting and Social Change, 209, 1–17. https://doi.org/10.1016/j.techfore.2024.123841

Do, H., Chu, L. X., & Shipton, H. (2025). How and when AI-driven HRM promotes employee resilience and adaptive performance: A self-determination theory. Journal of Business Research, 192, 1–12. https://doi.org/10.1016/j.jbusres.2025.115279

Doshi, A. R., Bell, J. J., Mirzayev, E., & Vanneste, B. S. (2024). Generative artificial intelligence and evaluating strategic decisions. Strategic Management Journal, 46(3), 583–610. https://doi.org/10.1002/smj.3677

Florea, N. V., & Croitoru, G. (2025). The Impact of Artificial Intelligence on Communication Dynamics and Performance in Organizational Leadership. Administrative Sciences, 15(2), 1–33. https://doi.org/10.3390/admsci15020033

Hamza, R. A. E. M., Alnor, N. H. A., Al-Matari, E. M., Benzerrouk, Z. S., Mohamed, A. M. E., Bennaceur, M. Y., Elhefni, A. H. M., & Elshaabany, M. M. (2024). The Impact of Artificial Intelligence (AI) on the Accounting System of Saudi Companies. WSEAS Transactions on Business and Economics, 21, 499–511. https://doi.org/10.37394/23207.2024.21.42

Han, N., Xu, W., Song, Q., Zhao, K., & Xu, Y. (2025). Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability (Switzerland), 17(3), 1–17. https://doi.org/10.3390/su17031121

Kundu, P., Luo, X., Qin, Y., Cai, Y., & Liu, Z. (2022). A machine learning-based framework for automatic identification of process and product fingerprints for smart manufacturing systems. Journal of Manufacturing Processes, 73, 128–138. https://doi.org/10.1016/j.jmapro.2021.10.060

Łapińska, J., Escher, I., Górka, J., Sudolska, A., & Brzustewicz, P. (2021). Employees’ trust in artificial intelligence in companies: The case of energy and chemical industries in Poland. Energies, 14(7), 1–20. https://doi.org/10.3390/en14071942

Lee, J. J., & Lee, M. (2022). Intelligent structuration: Machine learning forecasting. Issues in Information Systems, 23(1), 239–246. https://doi.org/10.48009/1_iis_2022_118

Leoni, L., Ardolino, M., El Baz, J., Gueli, G., & Bacchetti, A. (2022). The mediating role of knowledge management processes in the effective use of artificial intelligence in manufacturing firms. International Journal of Operations and Production Management, 42(13), 411–437. https://doi.org/10.1108/IJOPM-05-2022-0282

Liu, X., Sun, G., Ju, R., Li, J., Li, Z., Jiang, Y., Zhao, K., Zhang, Y., Jing, Y., & Yang, G. (2025). Prediction of load-bearing capacity of FRP-steel composite tubed concrete columns: Using explainable machine learning model with limited data. Structures, 71, 1–12. https://doi.org/10.1016/j.istruc.2024.107890

Mahmoud, M., Shma, T., Aziz, A., & Awad, A. (2025). Integrating knowledge management with smart technologies in public pharmaceutical organizations. Knowledge and Performance Management, 9(1), 31–44. https://doi.org/10.21511/kpm.09(1).2025.03

Mubarik, M., Maciukaite-Zviniene, S., Mubarak, M. F.,

Ghobakhloo, M., & Pilkova, A. (2025). Strategic and organisational factors for advancing knowledge in intelligent automation. Journal of Innovation and Knowledge, 10(2), 1–10. https://doi.org/10.1016/j.jik.2025.100675

Nuñez-Lira, L. A., Alfaro Bernedo, J. O., Aguado Lingan, A. M., & González Ponce de León, E. R. (2023). Strategic Decision Making in Business: Innovation and Competitiveness. Revista Venezolana de Gerencia, 28(9), 628–641. https://doi.org/10.52080/rvgluz.28.e9.39

Ojeda, A., Valera, J., Medina, E., Samadian, H., & Padilla, R. (2024). AI implementation in big data: Shaping data analysis for

business decisions. Issues in Information Systems, 25(4), 158–172. https://doi.org/10.48009/4_iis_2024_113

Palomino Quispe, J. F., Zapana Diaz, D., Choque-Flores, L., Castro León, A. L., Requis Carbajal, L. V., Pacherres Serquen, E. E., García-Huamantumba, A., García-Huamantumba, E., García-Huamantumba, C. F., & Guanilo Paredes, C. E. (2023). Quantitative Evaluation of the Impact of Artificial Intelligence on the Automation of Processes. Data and Metadata, 2, 1–6. https://doi.org/10.56294/dm2023101

Peng, L., & Zhang, X. (2024). Research on the Influence of AI Application on Business Decision Making Based on Machine Learning Algorithm. 1–7. https://doi.org/10.4108/eai.27-10-2023.2341918

Pouabe, P. S. E., Pretorius, J. H. C., & Pretorius, L. (2023). Decision-making based on machine learning techniques: a case study. Polish Journal of Management Studies, 28(1), 240–262. https://doi.org/10.17512/pjms.2023.28.1.14

Prikshat, V., Malik, A., & Budhwar, P. (2023). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33(1), 1–18. https://doi.org/10.1016/j.hrmr.2021.100860

Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2022). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364–387. https://doi.org/10.1080/0960085X.2021.1955628

Reaidy, P., Alaeddini, M., Gunasekaran, A., Lavastre, O., & Shahzad, M. (2024). Unveiling the impact of industry 4.0 on supply chain performance: the mediating role of integration and visibility. Production Planning and Control, 1–22. https://doi.org/10.1080/09537287.2024.2440454

Redchuk, A., Walas Mateo, F., Pascal, G., & Tornillo, J. E. (2023). Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model. Big Data and Cognitive Computing, 7(1), 1–10. https://doi.org/10.3390/bdcc7010042

Riad, M., Naimi, M., & Okar, C. (2024). Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization. Logistics, 8(4), 111. https://doi.org/10.3390/logistics8040111

Rožman, M., Oreški, D., & Tominc, P. (2022). Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in Psychology, 13, 1–16. https://doi.org/10.3389/fpsyg.2022.1014434

Salhab, H., Zoubi, M., Khrais, L. T., Estaitia, H., Harb, L., Al Huniti, A., & Morshed, A. (2025). AI-Driven Sustainable Marketing in Gulf Cooperation Council Retail: Advancing SDGs Through Smart Channels. Administrative Sciences, 15(1), 1–25. https://doi.org/10.3390/admsci15010020

Sarwar, Z., Song, Z. hong, Ali, S. T., Khan, M. A., & Ali, F. (2025). Unveiling the path to innovation: Exploring the roles of big data analytics management capabilities, strategic agility, and strategic alignment. Journal of Innovation and Knowledge, 10(1), 1–16. https://doi.org/10.1016/j.jik.2024.100643

Schmitt, M. (2023). Automated machine learning: AI-driven decision making in business analytics. Intelligent Systems with Applications, 18, 1–7. https://doi.org/10.1016/j.iswa.2023.200188

Vorobets, Y., Khmeliuk, A., Moshkovska, O., Valiyev, V. I., & Marukhlenko, O. (2024). The role of data analytics in making management decisions by the logistics intermediaries. Financial and Credit Activity Problems of Theory and Practice, 4(57), 185–196. https://doi.org/10.55643/fcaptp.4.57.2024.4422

Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2024). Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. Journal of Big Data, 11(1), 1–16. https://doi.org/10.1186/s40537-024-00905-w

Yang, L., Wang, X., Liu, Z., Liu, Y., & Fan, L. (2024). Real-time processing and optimization strategies for IoT data streams. Applied Mathematics and Nonlinear Sciences, 9(1), 1–22. https://doi.org/10.2478/amns-2024-2978

Yuvraj Lahoti. (2023). Artificial Intelligence Strategies for Business Process Optimization. ReAttach Therapy and Developmental Diversities, 6(1), 1643–1654. https://doi.org/https://doi.org/10.53555/jrtdd.v6i1.2841

Zaid, M., Farooqi, R., & Azmi, S. N. (2025). Driving sustainable supply chain performance through digital transformation: the role of information exchange and responsiveness. Cogent Business and Management, 12(1), 1–22. https://doi.org/10.1080/23311975.2024.2443047

Zhong, W., Zhao, L., & Dou, Q. (2025). The Implementation Strategy of Cost Control and the Construction of a Guarantee Model of Financial BPO in the Cloud Computing Environment. International Journal of Information System

Modeling and Design, 16(1), 1–21. https://doi.org/10.4018/IJISMD.367278

Zouaouia Imene, G. (2024). The role of artificial intelligence in enhancing decision-making quality within economic enterprises. International Journal of Economic Perspectives, 18(12), 2984–2999. https://ijeponline.org/index.php/journal/article/view/764

Descargas

Publicado

2025-10-07

Cómo citar

Miyata-Miyashiro, Y., & Montoya del Solar, S. (2025). Impacto de la inteligencia artificial en la optimización de procesos y toma de decisiones empresariales. Revista Innovación Digital Y Desarrollo Sostenible - IDS, 6(1), 74 - 88. https://doi.org/10.47185/27113760.v6n1.182

Número

Sección

Artículos originales