Impact of artificial intelligence on process optimization and business decision-making
DOI:
https://doi.org/10.47185/27113760.v6n1.182Keywords:
Artificial Intelligence, Process Optimization, Decision Making, Machine Learning, Big DataAbstract
The study examines the impact of artificial intelligence on process optimization and business decision-making, highlighting its role in digital transformation and sustainability. It is based on a systematic literature review following the PRISMA methodology, using databases such as Scopus. The findings indicate that AI boosts operational efficiency through machine learning, Big Data, and other advanced technologies, enabling automation, predictive analytics, and improved knowledge management. Furthermore, there is exponential growth in academic research on AI, driven by its application in key sectors such as manufacturing, retail, the pharmaceutical, and financial industries. However, its implementation poses challenges in governance, data quality, and ethical decision-making, highlighting the need to develop regulatory frameworks that ensure its responsible use. In conclusion, artificial intelligence has established itself as a strategic tool for process optimization and business decision-making, generating tangible benefits in efficiency and sustainability, although it requires structured approaches for its effective integration.
Downloads
References
Al-Surmi, A., Bashiri, M., & Koliousis, I. (2022). AI based decision making: combining strategies to improve operationalperformance. International Journal of Production Research, 60(14), 4464–4486. https://doi.org/10.1080/00207543.2021.1966540
AlNuaimi, B. K., Kumar Singh, S., Ren, S., Budhwar, P., & Vorobyev, D. (2022). Mastering digital transformation: The nexus between leadership, agility, and digital strategy. Journal of Business Research, 145, 636–648. https://doi.org/10.1016/j.jbusres.2022.03.038
Baabdullah, A. M. (2023). The precursors of AI adoption in business: Towards an efficient decision-making and functional performance. International Journal of Information Management, 75, 1–26. https://doi.org/10.1016/j.ijinfomgt.2023.102745
Bork, D., Ali, S. J., & Dinev, G. M. (2023). AI-Enhanced Hybrid Decision Management. Business and Information Systems Engineering, 65(2), 179–199. https://doi.org/10.1007/s12599-023-00790-2
Boy Barreto, A. M., Osorio Arrascue, E. D., Rodríguez Alegre, L. R., & López Padilla, R. del P. (2024). Artificial intelligence in decision making: ethical implications and efficiency. Revista Venezolana de Gerencia, 29(11), 342–355. https://doi.org/10.52080/rvgluz.29.e11.20
Carlos Alberto Santamaría Velasco, Diana Montoya Ojeda, Nancy Elizabeth Chariguamán Maurisaca, & Jenny Patricia Quiñónez Bustos. (2025). Optimizing Business Decision-Making Using Intelligent Information Systems A Quantitative Approach. Journal of Information Systems Engineering and Management, 10(16), 371–378. https://doi.org/https://doi.org/10.52783/jisem.v10i16s.2622
Chen, D., Esperança, J. P., & Wang, S. (2022). The Impact of Artificial Intelligence on Firm Performance: An Application of the Resource-Based View to e-Commerce Firms. Frontiers in Psychology, 13, 1–14. https://doi.org/10.3389/fpsyg.2022.884830
Dalal, S., Lilhore, U. K., Simaiya, S., Radulescu, M., & Belascu, L. (2024). Improving efficiency and sustainability via supply chain optimization through CNNs and BiLSTM. Technological Forecasting and Social Change, 209, 1–17. https://doi.org/10.1016/j.techfore.2024.123841
Do, H., Chu, L. X., & Shipton, H. (2025). How and when AI-driven HRM promotes employee resilience and adaptive performance: A self-determination theory. Journal of Business Research, 192, 1–12. https://doi.org/10.1016/j.jbusres.2025.115279
Doshi, A. R., Bell, J. J., Mirzayev, E., & Vanneste, B. S. (2024). Generative artificial intelligence and evaluating strategic decisions. Strategic Management Journal, 46(3), 583–610. https://doi.org/10.1002/smj.3677
Florea, N. V., & Croitoru, G. (2025). The Impact of Artificial Intelligence on Communication Dynamics and Performance in Organizational Leadership. Administrative Sciences, 15(2), 1–33. https://doi.org/10.3390/admsci15020033
Hamza, R. A. E. M., Alnor, N. H. A., Al-Matari, E. M., Benzerrouk, Z. S., Mohamed, A. M. E., Bennaceur, M. Y., Elhefni, A. H. M., & Elshaabany, M. M. (2024). The Impact of Artificial Intelligence (AI) on the Accounting System of Saudi Companies. WSEAS Transactions on Business and Economics, 21, 499–511. https://doi.org/10.37394/23207.2024.21.42
Han, N., Xu, W., Song, Q., Zhao, K., & Xu, Y. (2025). Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability (Switzerland), 17(3), 1–17. https://doi.org/10.3390/su17031121
Kundu, P., Luo, X., Qin, Y., Cai, Y., & Liu, Z. (2022). A machine learning-based framework for automatic identification of process and product fingerprints for smart manufacturing systems. Journal of Manufacturing Processes, 73, 128–138. https://doi.org/10.1016/j.jmapro.2021.10.060
Łapińska, J., Escher, I., Górka, J., Sudolska, A., & Brzustewicz, P. (2021). Employees’ trust in artificial intelligence in companies: The case of energy and chemical industries in Poland. Energies, 14(7), 1–20. https://doi.org/10.3390/en14071942
Lee, J. J., & Lee, M. (2022). Intelligent structuration: Machine learning forecasting. Issues in Information Systems, 23(1), 239–246. https://doi.org/10.48009/1_iis_2022_118
Leoni, L., Ardolino, M., El Baz, J., Gueli, G., & Bacchetti, A. (2022). The mediating role of knowledge management processes in the effective use of artificial intelligence in manufacturing firms. International Journal of Operations and Production Management, 42(13), 411–437. https://doi.org/10.1108/IJOPM-05-2022-0282
Liu, X., Sun, G., Ju, R., Li, J., Li, Z., Jiang, Y., Zhao, K., Zhang, Y., Jing, Y., & Yang, G. (2025). Prediction of load-bearing capacity of FRP-steel composite tubed concrete columns: Using explainable machine learning model with limited data. Structures, 71, 1–12. https://doi.org/10.1016/j.istruc.2024.107890
Mahmoud, M., Shma, T., Aziz, A., & Awad, A. (2025). Integrating knowledge management with smart technologies in public pharmaceutical organizations. Knowledge and Performance Management, 9(1), 31–44. https://doi.org/10.21511/kpm.09(1).2025.03
Mubarik, M., Maciukaite-Zviniene, S., Mubarak, M. F.,
Ghobakhloo, M., & Pilkova, A. (2025). Strategic and organisational factors for advancing knowledge in intelligent automation. Journal of Innovation and Knowledge, 10(2), 1–10. https://doi.org/10.1016/j.jik.2025.100675
Nuñez-Lira, L. A., Alfaro Bernedo, J. O., Aguado Lingan, A. M., & González Ponce de León, E. R. (2023). Strategic Decision Making in Business: Innovation and Competitiveness. Revista Venezolana de Gerencia, 28(9), 628–641. https://doi.org/10.52080/rvgluz.28.e9.39
Ojeda, A., Valera, J., Medina, E., Samadian, H., & Padilla, R. (2024). AI implementation in big data: Shaping data analysis for
business decisions. Issues in Information Systems, 25(4), 158–172. https://doi.org/10.48009/4_iis_2024_113
Palomino Quispe, J. F., Zapana Diaz, D., Choque-Flores, L., Castro León, A. L., Requis Carbajal, L. V., Pacherres Serquen, E. E., García-Huamantumba, A., García-Huamantumba, E., García-Huamantumba, C. F., & Guanilo Paredes, C. E. (2023). Quantitative Evaluation of the Impact of Artificial Intelligence on the Automation of Processes. Data and Metadata, 2, 1–6. https://doi.org/10.56294/dm2023101
Peng, L., & Zhang, X. (2024). Research on the Influence of AI Application on Business Decision Making Based on Machine Learning Algorithm. 1–7. https://doi.org/10.4108/eai.27-10-2023.2341918
Pouabe, P. S. E., Pretorius, J. H. C., & Pretorius, L. (2023). Decision-making based on machine learning techniques: a case study. Polish Journal of Management Studies, 28(1), 240–262. https://doi.org/10.17512/pjms.2023.28.1.14
Prikshat, V., Malik, A., & Budhwar, P. (2023). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33(1), 1–18. https://doi.org/10.1016/j.hrmr.2021.100860
Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2022). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364–387. https://doi.org/10.1080/0960085X.2021.1955628
Reaidy, P., Alaeddini, M., Gunasekaran, A., Lavastre, O., & Shahzad, M. (2024). Unveiling the impact of industry 4.0 on supply chain performance: the mediating role of integration and visibility. Production Planning and Control, 1–22. https://doi.org/10.1080/09537287.2024.2440454
Redchuk, A., Walas Mateo, F., Pascal, G., & Tornillo, J. E. (2023). Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model. Big Data and Cognitive Computing, 7(1), 1–10. https://doi.org/10.3390/bdcc7010042
Riad, M., Naimi, M., & Okar, C. (2024). Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization. Logistics, 8(4), 111. https://doi.org/10.3390/logistics8040111
Rožman, M., Oreški, D., & Tominc, P. (2022). Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in Psychology, 13, 1–16. https://doi.org/10.3389/fpsyg.2022.1014434
Salhab, H., Zoubi, M., Khrais, L. T., Estaitia, H., Harb, L., Al Huniti, A., & Morshed, A. (2025). AI-Driven Sustainable Marketing in Gulf Cooperation Council Retail: Advancing SDGs Through Smart Channels. Administrative Sciences, 15(1), 1–25. https://doi.org/10.3390/admsci15010020
Sarwar, Z., Song, Z. hong, Ali, S. T., Khan, M. A., & Ali, F. (2025). Unveiling the path to innovation: Exploring the roles of big data analytics management capabilities, strategic agility, and strategic alignment. Journal of Innovation and Knowledge, 10(1), 1–16. https://doi.org/10.1016/j.jik.2024.100643
Schmitt, M. (2023). Automated machine learning: AI-driven decision making in business analytics. Intelligent Systems with Applications, 18, 1–7. https://doi.org/10.1016/j.iswa.2023.200188
Vorobets, Y., Khmeliuk, A., Moshkovska, O., Valiyev, V. I., & Marukhlenko, O. (2024). The role of data analytics in making management decisions by the logistics intermediaries. Financial and Credit Activity Problems of Theory and Practice, 4(57), 185–196. https://doi.org/10.55643/fcaptp.4.57.2024.4422
Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2024). Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. Journal of Big Data, 11(1), 1–16. https://doi.org/10.1186/s40537-024-00905-w
Yang, L., Wang, X., Liu, Z., Liu, Y., & Fan, L. (2024). Real-time processing and optimization strategies for IoT data streams. Applied Mathematics and Nonlinear Sciences, 9(1), 1–22. https://doi.org/10.2478/amns-2024-2978
Yuvraj Lahoti. (2023). Artificial Intelligence Strategies for Business Process Optimization. ReAttach Therapy and Developmental Diversities, 6(1), 1643–1654. https://doi.org/https://doi.org/10.53555/jrtdd.v6i1.2841
Zaid, M., Farooqi, R., & Azmi, S. N. (2025). Driving sustainable supply chain performance through digital transformation: the role of information exchange and responsiveness. Cogent Business and Management, 12(1), 1–22. https://doi.org/10.1080/23311975.2024.2443047
Zhong, W., Zhao, L., & Dou, Q. (2025). The Implementation Strategy of Cost Control and the Construction of a Guarantee Model of Financial BPO in the Cloud Computing Environment. International Journal of Information System
Modeling and Design, 16(1), 1–21. https://doi.org/10.4018/IJISMD.367278
Zouaouia Imene, G. (2024). The role of artificial intelligence in enhancing decision-making quality within economic enterprises. International Journal of Economic Perspectives, 18(12), 2984–2999. https://ijeponline.org/index.php/journal/article/view/764
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yun Miyata, Sebastian Montoya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.