Avaliação do Potencial de Eleocharis elegans na Fitorremediação de Águas Coloridas Provenientes da Floricultura
DOI:
https://doi.org/10.47185/27113760.v5n1.154Palavras-chave:
Contaminación, Agua residual coloreada, Floricultivos, Fitorremediación, Tratamiento de agua, Humedales artificialesResumo
A contaminação, resultado do crescimento demográfico e das atividades humanas, afeta a saúde e o meio ambiente. No Oriente antioquenho, o crescimento da indústria florícola gera águas residuais coloridas, que poderiam ser tratadas por meio de fitorremediação com wetlands artificiais, oferecendo uma alternativa eficaz e sustentável para abordar o problema da contaminação da água. Portanto, este trabalho propôs determinar o potencial fitorremediador de Eleocharis elegans no tratamento de águas residuais coloridas derivadas da coloração de flores para exportação. Este trabalho investigativo foi desenvolvido no campus da Universidade Católica de Oriente, em Rionegro, Ant. (Colômbia), onde foram instalados wetlands artificiais de fluxo subsuperficial com medidas de 26cm*30cm*28cm cada um, um sistema de recirculação, cascalho de 1-2 cm e terra como substrato das plantas. Na pesquisa, foram testados dois métodos distintos que contemplavam as variáveis de absorbância e DQO para determinar o grau de contaminação, e algumas outras variáveis de resposta como pH, oxigênio dissolvido, turbidez, condutividade, SDT e REDOX. Foi possível alcançar uma remoção de cerca de 50% em DQO e cor, embora os resultados tenham sido inferiores a outros estudos, possivelmente devido ao impacto negativo nas plantas pelos diferentes compostos do contaminante, evidenciado no crescimento e número de eixos.
Downloads
Referências
A.G., N., Masayuki, S., & Koichiro S. (2017). Phytoremediation of Heavy Metal-Polluted Mine Drainage by Eleocharis acicularis. An Indian Journal, 13(1), 1–11. www.tsijournals.com
Alderete-Suarez, B. M., Valles-Aragón, M. C., Canales-Reyes, S., Peralta-Pérez, M. D. R., & Orrantia-Borunda, E. (2019). Bioconcentración de pb, cd y as en biomasa de eleocharis macrostachya (Cyperaceae). Revista Internacional de Contaminacion Ambiental, 35(Special Issue 3), 93–101. https://doi.org/10.20937/RICA.2019.35.esp03.11
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 13. https://doi.org/10.1016/j.chemosphere.2013.01.075
Alvares-Lopez, J. diego, & Rojas-Rodas, F. (2019). Diseño y evaluación de un humedal artificial de flujo subsuperficial, para el tratamiento de residuos líquidos químicos generados en el laboratorio de la universidad católica de oriente. Universidad católica de oriente.
American Public Health Association. (2017). Standard methods for the examination of water and wastewater. Washington [ESTADOS UNIDOS], 23.
Amin, M. M., Hashemi, H., Bovini, A. M., & Hung, Y. T. (2013). A review on wastewater disinfection. International Journal of Environmental Health Engineering, 2(1). https://doi.org/10.4103/2277-9183.113209
Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. D., & Coats, J. R. (2005). Phytoremediation - An overview. Critical Reviews in Plant Sciences, 24(2), 109–122. https://doi.org/10.1080/07352680590952496
Benjumea-Hoyos, C. A., Giraldo Restrepo, S., & Gutiérrez Monsalve, J. (2024). Electro-Fenton method for dye removal of agro-industrial wastewater from flower production. Advances in Environmental Technology, 10(2), 118-130. DOI: 10.22104/aet.2024.6395.1750
Luna, J.M. & Benjumea-Hoyos, C.A. Evaluación de la descomposición de imágenes digitales, para la estimación indirecta de la turbidez en muestras de agua de cuerpos naturales. Bionatura., 2019, 4(2), pp. 861–871. DOI: 10.21931/RB/2019.04.02.8.
Benjumea-Hoyos, C. A., Villada, A., & Castaño, J. D. (2020). Comportamiento de la estructura térmica y características morfométricas de un humedal de montaña tropical. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 329-343. https://doi.org/10.18257/raccefyn.1046.
Benjumea-Hoyos, C. A., Suárez-Segura, M. A., & Villabona-González, S. L. (2018). Variación espacial y temporal de nutrientes y total de sólidos en suspensión en la cuenca de un río de alta montaña tropical. Revista de la Academia de Ciencias Exactas, Físicas y Naturales, 42(165), 353-363. https://doi.org/10.18257/raccefyn.777
Benjumea-Hoyos, C.A. (2018). Determinación de coeficientes de degradación de materia orgánica en el rio Negro (municipio de Rionegro, Colombia). Bionatura, 3(1), pp. 537–543. http://dx.doi.org/10.21931/RB/2018.03.01.10
Bowmer, K. H. (1987). Nutrient removal from effluents by anartificial wetland: influence of rhizosphereaeration and preferential flow studiedusing bromide and dye tracers. War. Res., 21(5), 591–599.
Bulc, T. G., & Ojstršek, A. (2008). The use of constructed wetland for dye-rich textile wastewater treatment. Journal of Hazardous Materials, 155(1–2), 76–82. https://doi.org/10.1016/j.jhazmat.2007.11.068
Burgos-Tapuy, I. A., & Vallejo-Vallejo, J. C. (2019). Determinación de la remoción de aluminio por la especie eleocharis elegans (junquillo) y su absorción en un humedal artificial mediante análisis de espectrofotometría de absorción atómica. Universidad estatal amazónica.
Butterworth, E., Dotro, G., Jones, M., Richards, A., Onunkwo, P., Narroway, Y., & Jefferson, B. (2013). Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecological Engineering, 54, 236–244. https://doi.org/10.1016/j.ecoleng.2013.01.034
CORNARE. (2012). Evaluación y zonificación de riesgos por avenida torrencial, inundación y movimiento en masa y dimensionamiento de procesos erosivos en el municipio de rionegro. In Cornare y Gobernación de Antioquia (Issue 5). http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf
Correa-Villegas, D. (2023). Concepto Economico Oriente Antioqueño (p. 86). https://ccoa.org.co/wp-content/uploads/2022/02/Concepto-Economico-2021-1.pdf
Delgadillo-López, A. E., González-Ramírez, C. A., Prieto-García, F., Villagómez-Ibarra, J. R., & Acevedo-Sandova, O. (2011). Phytoremediation: An alternative to eliminate pollution. Tropical and Subtropical Agroecosystems, 14(2), 597–612.
Demirbas, A., Edris, G., & Alalayah, W. M. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(10), 999–1006. https://doi.org/10.1080/15567036.2017.1283551
Dietz, A. C., & Schnoor, J. L. (2001). Advances in phytoremediation. Environmental Health Perspectives, 109(1), 163–168. https://doi.org/10.1289/ehp.01109s1163
Doğruel, S., & Orhon, D. (2021). Particle size distribution of chemical oxygen demand in industrial effluents: impact on effective filtration size and modelling of membrane bioreactors. Journal of Chemical Technology and
Biotechnology, 96(7), 1777–1784. https://doi.org/10.1002/jctb.6735
Duim-Ferreira, A., Gomes-Viana, D., Egreja-Filho, F. B., Ribeiro-Pires, F., Bonomo, R., Martins, L. F., Pinto-Nascimento, M. C., & Silva Cruz, L. B. (2019). Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula. Chemosphere, 219, 836–844. https://doi.org/10.1016/j.chemosphere.2018.12.074
Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120–136.
Fonnegra-Gómez, R., & Villa-Londoño, J. (2011). Plantas medicinales usadas en algunas veredas de municipios del altiplano del Oriente antioqueño, Colombia. Actual Biol, 33(95), 219–250. https://doi.org/https://doi.org/10.17533/udea.acbi.14320
Gil, A. dos S. B., & Bove, C. P. (2004). O Gênero Eleocharis R. BR. (Cyperaceae) nos Ecossistemas Aquáticos Temporários da Planicie Costeira. Arquivos Do Museu Nacional, Rio de Janeiro, 62(2), 131–150.
Girlado-Raigoza, M., & Medina-Arroyave, J. D. (2017). Remoción de colorantes de aguas residuales resultantes del tinturado de flores. Ingeniería de Procesos, 1–28. https://repository.eafit.edu.co/bitstream/handle/10784/13228/Manuela_GiraldoRaigoza_2017.pdf?sequence=2&isAllowed=y
Gobena, B., Kinfu, A., & Berhanu, M. (2020). Social and Environmental Concerns of Flower Farms in Central Ethiopia. International Journal of Environmental & Agriculture Research, 6(12), 70–78. https://www.academia.edu/download/65428875/IJOEAR_DEC_2020_23.pdf
Holdridge, L. R. (1982). Ecologia basada en zonas de vida (M. De la cruz (ed.); Segunda reimp.). IICA. http://www.cct.or.cr/contenido/wp-content/uploads/2017/11/Ecologia-Basada-en-Zonas-de-Vida-Libro-IV.pdf
Hussein, A., & Scholz, M. (2018). Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Environmental Science and Pollution Research, 25, 6870–6889. https://doi.org/https://doi.org/10.1007/s11356-017-0992-0
Ilyas, S. Z., Khattak, A. I., Nasir, S. M., Qurashi, T., & Durrani, T. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12(3), 291–299. https://doi.org/10.1007/s10098-009-0209-4
Imron, M. F., Kurniawan, S. B., Soegianto, A., & Wahyudianto, F. E. (2019). Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5(8), e02206. https://doi.org/10.1016/j.heliyon.2019.e02206
Iturbe-Arguelles, R. (2010). ¿Qué es la biorremediación? (Primera edición). Fundacion Telmex.
Jaramillo-Gallego, M. L., Agudelo-Cadavid, R. M., & Peñuela-Mesa, G. A. (2016). Optimización del tratamiento de aguas residuales de cultivos de flores usando humedales construidos de flujo subsuperficial horizontal. Revista Facultad Nacional de Salud Pública, 34(1), 20–29. https://doi.org/10.17533/UDEA.RFNSP.V34N1A03
Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012
Krull, R., & Döpkens, E. (2004). Recycling of dyehouse effluents by biological and chemical treatment. Water Science and Technology, 49(4), 311–317. https://doi.org/10.2166/wst.2004.0293
Kruskal, W. H., Wallis, W. A., & Kruskal, W. H. (1952). Use of Ranks in One-Criterion Variance Analysis. American Statistical Association, 47(1), 583–621. https://doi.org/10.2307/2280779
Lakshmi, K. S., Sailaja, V. H., & Reddy, M. A. (2017). Phytoremediation - A Promising Technique in Waste Water Treatment. International Journal of Scientific Research and Management, 5(06), 5480–5489. https://doi.org/10.18535/ijsrm/v5i6.20
Levene, H. (1960). Robust Tests for Equality of Variances. In I. Olkin (Ed.), Contributions to Probability and Statisti (pp. 278–292). Stanford University Pres.
Li, J., Luo, G., He, L. J., Xu, J., & Lyu, J. (2018). Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Critical Reviews in Analytical Chemistry, 48(1), 47–65. https://doi.org/10.1080/10408347.2017.1370670
Li, M., Zhang, W., Xia, Y., & Gao, Y. (2011). Study on removal efficiencies of pollutant from constructed wetland in aquiculture waste water around Poyang Lake. Procedia Environmental Sciences, 10, 2444–2448. https://doi.org/10.1016/j.proenv.2011.09.380
Lucena, F., Duran, A. E., Morón, A., Calderón, E., Campos, C., Gantzer, C., Skraber, S., & Jofre, J. (2004). Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. Journal of Applied Microbiology, 97(5), 1069–1076. https://doi.org/10.1111/j.1365-2672.2004.02397.x
Magalhães, A. F., Ruiz, A. L. T. G., Flach, A., Faria, A. D., Magalhães, E. G., & Amaral, M. D. C. E. (2005). Floral scent of Eleocharis elegans (Kunth) Roem. & Schult. (Cyperaceae). Biochemical Systematics and Ecology, 33(7), 675–679. https://doi.org/10.1016/j.bse.2004.12.004
Ma, J., Wu, S., Shekhar, N. V. R., Biswas, S., & Sahu, A. K. (2020). Determination of Physicochemical Parameters and Levels of Heavy Metals in Food Waste Water with Environmental Effects. Bioinorganic Chemistry and Applications, 2020. https://doi.org/10.1155/2020/8886093
Maguiña-Castillo, L. F. (2017). Determinación de la capacidad fitorremediadora de Lupinus mutabilis Sweet “chocho o tarwi” en suelos contaminados con cadmio (Cd) [Universidad Ricardo Palma]. https://1library.co/document/qo5m330y-determinacion-capacidad-fitorremediadora-lupinus-mutabilis-sweet-chocho-contaminados.html
Malik, A., & Khan, S. (2014). Environmental deterioration and human health: Natural and anthropogenic determinants. Environmental Deterioration and Human Health, 1–421. https://doi.org/10.1007/978-94-007-7890-0
Mejía, D., Zegarra, R., Astudillo, A., & Moscoso, D. (2018). Análisis de partículas sedimentables y niveles de presión sonora en el área urbana y periférica de Cuenca . Revista de La Facultad de Ciencias Químicas. https://www.virtualpro.co/biblioteca/analisis-de-particulas-sedimentables-y-niveles-de-presion-sonora-en-el-area-urbana-y-periferica-de-cuenca
Meng, X., Khoso, S. A., Jiang, F., Zhang, Y., Yue, T., Gao, J., Lin, S., Liu, R., Gao, Z., Chen, P., Wang, L., Han, H., Tang, H., Sun, W., & Hu, Y. (2020). Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Separation and Purification Technology, 235, 116233. https://doi.org/10.1016/j.seppur.2019.116233
Menezes, M. Â. de B. C., Falnoga, I., Šlejkovec, Z., Jaćimović, R., Couto, N., Deschamps, E., & Faganeli, J. (2020). Arsenic in sediments, soil and plants in a remediated area of the iron quadrangle, Brazil, and its accumulation and biotransformation in eleocharis geniculata. Acta Chimica Slovenica, 67(3), 985–991. https://doi.org/10.17344/acsi.2019.5760
Montoya, J. I., Ceballos, L., Casas, J. C., & Morató, J. (2010). Estudio comparativo de la remoción demateria orgánica en humedales construidosde flujo horizontal subsuperficialusando tres especies de macrófitas. EIA, 14, 75–84.
Noreña-Acevedo, A. E., Osorio-Cortes, C. A., & Duran-Rivera, B. (2020). Evaluación de la remoción de color en efluentes de floricultura, por medio de la inmovilización del hongo Orellana . Universidad Catolica de Oriente.
Obando Arango, S., & Villegas, N. (2018). Estandarización de un método de laboratorio para la medición de la demanda béntica de oxígeno. Revista Politécnica, 14(27), 20–29. https://doi.org/10.33571/rpolitec.v14n27a2
Olmos-Márquez, M. A., Ochoa-Rivero, J. M., Alarcón-Herrera, M. T., Santellano-Estrada, E., Vega-Mares, J. H., & Valles-Aragón, M. C. (2020). Performance of a pilot subsurface flow treatment wetland system, used forarsenic removal from reverse osmosis concentrate, in the municipality of Julimes, Chihuahua, Mexico. Ingenieria y Universidad, 24(1), 1–16. https://doi.org/10.11144/Javeriana.iued24.ppsf
Osorio-Loaiza, M. (2022). Perfil de Desarrollo Subregional Subregión Occidente de Antioquia. In Universidad de Antioquia (Vol. 15, Issue 6). https://ctpantioquia.co/wp-content/uploads/2023/11/Perfil-de-desarrollo-Occidente_compressed.pdf
Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air, and Soil Pollution 2007 184:1, 184(1), 105–126. https://doi.org/10.1007/S11270-007-9401-5
Pandey, S. (2006). Water pollution and health. Kathmandu University Medical Journal, 4 NO. 1(13), 128–134.
Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15. https://doi.org/10.1146/annurev.arplant.56.032604.144214
Pineda-Gómez, H. D., & Pimienta-Betancur, A. (2021). Recortes espaciales que configuran el Oriente antioqueño: de la región a la superposición de territorialidades. Territorios, 45, 41–62. https://doi.org/10.12804/revistas.urosario.edu.co/territorios/a.9946
Postolache, O. A., Girão, P. M. B. S., Pereira, J. M. D., & Ramos, H. M. G. (2007). Multibeam optical system and neural processing for turbidity measurement. IEEE Sensors, 7(5), 677–684. https://doi.org/10.1109/JSEN.2007.894896
Ratna, A., & Padhi, B. (2012). Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences, 3(3), 940–955. https://doi.org/10.6088/ijes.2012030133002
Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of Organic Contaminants in Soil and Groundwater. ChemSusChem, 1(8–9), 708–717. https://doi.org/10.1002/CSSC.200800125
Roy-Choudhury, A. K. (2013). Green chemistry and the textile industry. Textile Progress, 45(1), 3–143. https://doi.org/10.1080/00405167.2013.807601
Saier, M. H., & Trevors, J. T. (2010). Phytoremediation. Water Air and Soil Pollution, 205(SUPPL.1), 2008–2010. https://doi.org/10.1007/s11270-008-9673-4
Sanchez-Ortiz, C. (2022, August 6). La importancia del agua para la vida. https://www.cespt.gob.mx/informa/importanciaagua.aspx
Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709
Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835
Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167(1–3), 55–63. https://doi.org/10.1016/j.desal.2004.06.113
Sumiahadi, A., & Acar, R. (2018). A review of phytoremediation technology: Heavy metals uptake by plants. Earth and Environmental Science, 142(1), 012023. https://doi.org/10.1088/1755-1315/142/1/012023
Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647–658. https://doi.org/10.1016/S0925-8574(02)00026-5
Team, R. C. (2021). R: A language and environment for statistical computing (3.3.0). R Foundation for Statistical Computing. https://www.r-project.org/.
Tizaoui, C., Bouselmi, L., Mansouri, L., & Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1–2), 316–324. https://doi.org/10.1016/j.jhazmat.2006.09.023
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Journal of Economic Entomology, 1(6), 80–83. https://doi.org/10.1093/jee/39.2.269.
Wang, J., Zhang, Q., Zhang, Y. N., Fu, M., Ding, Y., Gao, X., ... & Bai, S. (2023). Efficient removal mechanism of an electrical conductivity-enhanced constructed wetlands under particle accumulated conditions. Journal of Cleaner Production, 411, 137257. doi: 10.1016/j.jclepro.2023.137257.
Qomariyah, S., Utomo, B., & Wahyudi, A. H. (2022, July). Constructed wetlands with Cyperus alternifolius as a sustainable solution for household greywater treatment. In IOP Conference Series: Earth and Environmental Science (Vol. 1065, No. 1, p. 012025). IOP Publishing. doi: 10.1088/1755-1315/1065/1/012025.
Idris, N. N., Chua, L. H., Mustaffa, Z., Das, S., & Takaijudin, H. (2024). A review study on the association between hydraulic performance and treatment effectiveness in free surface flow constructed wetlands. Ecological Engineering, 203, 107258. doi: 10.1016/j.ecoleng.2024.107258.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Benjumea-Hoyos, Marlon Yesid Carmona Loaiza, Miguel Rojas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.