Assessment of the Potential of Eleocharis elegans Using Constructed Wetlands in the Phytoremediation of Colored Wastewater from the Flower Agroindustry

Authors

  • Carlos Augusto Benjumea Hoyos Grupo de Investigación Limnología y Recursos Hídricos, Facultad Ingeniería, Universidad Católica de Oriente https://orcid.org/0000-0002-3702-4300
  • Marlon Yesid Carmona Loaiza Grupo de Investigación Limnología y Recursos Hídricos, Facultad Ingeniería, Universidad Católica de Oriente
  • José Miguel Rojas Grupo de Investigación Estudios Florísticos, Universidad Católica de Oriente

DOI:

https://doi.org/10.47185/27113760.v5n1.154

Keywords:

Contamination, Colored wastewater, Floriculture, Phytoremediation, Water treatment, constructed wetlands

Abstract

Pollution, the result of population growth and human activities, affects health and the environment. In eastern Antioquia, the boom of the flower industry generates colored wastewater, which could be treated by phytoremediation with artificial wetlands, offering an effective and sustainable alternative to address the problem of water pollution; therefore, this study aimed to determine the phytoremediation potential of Eleocharis elegans in the treatment of colored wastewater derived from the dyeing of flowers for export. This research was carried out on the campus of the Universidad Católica de Oriente, in Rionegro, Ant. (Colombia), where subsurface flow artificial wetlands were installed, each measuring 26cm*30cm*28cm, with a recirculation system, 1-2 cm gravel and soil as a substrate for the plants. Two different methods were tested in the investigation that contemplated the absorbance and COC variables to determine the degree of contamination, and some other response variables such as pH, dissolved oxygen, turbidity, conductivity, TDS and REDOX. It was possible to achieve a removal of about 50% in COC and color, although the results were lower than in other studies, possibly due to the negative effect on the plants by the different pollutant compounds, as evidenced by the growth and number of axes.

Downloads

Download data is not yet available.

Author Biography

Carlos Augusto Benjumea Hoyos, Grupo de Investigación Limnología y Recursos Hídricos, Facultad Ingeniería, Universidad Católica de Oriente

Par evaluador reconocido por Minciencias.
Investigador Asociado

References

A.G., N., Masayuki, S., & Koichiro S. (2017). Phytoremediation of Heavy Metal-Polluted Mine Drainage by Eleocharis acicularis. An Indian Journal, 13(1), 1–11. www.tsijournals.com

Alderete-Suarez, B. M., Valles-Aragón, M. C., Canales-Reyes, S., Peralta-Pérez, M. D. R., & Orrantia-Borunda, E. (2019). Bioconcentración de pb, cd y as en biomasa de eleocharis macrostachya (Cyperaceae). Revista Internacional de Contaminacion Ambiental, 35(Special Issue 3), 93–101. https://doi.org/10.20937/RICA.2019.35.esp03.11

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 13. https://doi.org/10.1016/j.chemosphere.2013.01.075

Alvares-Lopez, J. diego, & Rojas-Rodas, F. (2019). Diseño y evaluación de un humedal artificial de flujo subsuperficial, para el tratamiento de residuos líquidos químicos generados en el laboratorio de la universidad católica de oriente. Universidad católica de oriente.

American Public Health Association. (2017). Standard methods for the examination of water and wastewater. Washington [ESTADOS UNIDOS], 23.

Amin, M. M., Hashemi, H., Bovini, A. M., & Hung, Y. T. (2013). A review on wastewater disinfection. International Journal of Environmental Health Engineering, 2(1). https://doi.org/10.4103/2277-9183.113209

Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. D., & Coats, J. R. (2005). Phytoremediation - An overview. Critical Reviews in Plant Sciences, 24(2), 109–122. https://doi.org/10.1080/07352680590952496

Benjumea-Hoyos, C. A., Giraldo Restrepo, S., & Gutiérrez Monsalve, J. (2024). Electro-Fenton method for dye removal of agro-industrial wastewater from flower production. Advances in Environmental Technology, 10(2), 118-130. DOI: 10.22104/aet.2024.6395.1750

Luna, J.M. & Benjumea-Hoyos, C.A. Evaluación de la descomposición de imágenes digitales, para la estimación indirecta de la turbidez en muestras de agua de cuerpos naturales. Bionatura., 2019, 4(2), pp. 861–871. DOI: 10.21931/RB/2019.04.02.8.

Benjumea-Hoyos, C. A., Villada, A., & Castaño, J. D. (2020). Comportamiento de la estructura térmica y características morfométricas de un humedal de montaña tropical. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 329-343. https://doi.org/10.18257/raccefyn.1046.

Benjumea-Hoyos, C. A., Suárez-Segura, M. A., & Villabona-González, S. L. (2018). Variación espacial y temporal de nutrientes y total de sólidos en suspensión en la cuenca de un río de alta montaña tropical. Revista de la Academia de Ciencias Exactas, Físicas y Naturales, 42(165), 353-363. https://doi.org/10.18257/raccefyn.777

Benjumea-Hoyos, C.A. (2018). Determinación de coeficientes de degradación de materia orgánica en el rio Negro (municipio de Rionegro, Colombia). Bionatura, 3(1), pp. 537–543. http://dx.doi.org/10.21931/RB/2018.03.01.10

Bowmer, K. H. (1987). Nutrient removal from effluents by anartificial wetland: influence of rhizosphereaeration and preferential flow studiedusing bromide and dye tracers. War. Res., 21(5), 591–599.

Bulc, T. G., & Ojstršek, A. (2008). The use of constructed wetland for dye-rich textile wastewater treatment. Journal of Hazardous Materials, 155(1–2), 76–82. https://doi.org/10.1016/j.jhazmat.2007.11.068

Burgos-Tapuy, I. A., & Vallejo-Vallejo, J. C. (2019). Determinación de la remoción de aluminio por la especie eleocharis elegans (junquillo) y su absorción en un humedal artificial mediante análisis de espectrofotometría de absorción atómica. Universidad estatal amazónica.

Butterworth, E., Dotro, G., Jones, M., Richards, A., Onunkwo, P., Narroway, Y., & Jefferson, B. (2013). Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecological Engineering, 54, 236–244. https://doi.org/10.1016/j.ecoleng.2013.01.034

CORNARE. (2012). Evaluación y zonificación de riesgos por avenida torrencial, inundación y movimiento en masa y dimensionamiento de procesos erosivos en el municipio de rionegro. In Cornare y Gobernación de Antioquia (Issue 5). http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf

Correa-Villegas, D. (2023). Concepto Economico Oriente Antioqueño (p. 86). https://ccoa.org.co/wp-content/uploads/2022/02/Concepto-Economico-2021-1.pdf

Delgadillo-López, A. E., González-Ramírez, C. A., Prieto-García, F., Villagómez-Ibarra, J. R., & Acevedo-Sandova, O. (2011). Phytoremediation: An alternative to eliminate pollution. Tropical and Subtropical Agroecosystems, 14(2), 597–612.

Demirbas, A., Edris, G., & Alalayah, W. M. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(10), 999–1006. https://doi.org/10.1080/15567036.2017.1283551

Dietz, A. C., & Schnoor, J. L. (2001). Advances in phytoremediation. Environmental Health Perspectives, 109(1), 163–168. https://doi.org/10.1289/ehp.01109s1163

Doğruel, S., & Orhon, D. (2021). Particle size distribution of chemical oxygen demand in industrial effluents: impact on effective filtration size and modelling of membrane bioreactors. Journal of Chemical Technology and

Biotechnology, 96(7), 1777–1784. https://doi.org/10.1002/jctb.6735

Duim-Ferreira, A., Gomes-Viana, D., Egreja-Filho, F. B., Ribeiro-Pires, F., Bonomo, R., Martins, L. F., Pinto-Nascimento, M. C., & Silva Cruz, L. B. (2019). Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula. Chemosphere, 219, 836–844. https://doi.org/10.1016/j.chemosphere.2018.12.074

Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120–136.

Fonnegra-Gómez, R., & Villa-Londoño, J. (2011). Plantas medicinales usadas en algunas veredas de municipios del altiplano del Oriente antioqueño, Colombia. Actual Biol, 33(95), 219–250. https://doi.org/https://doi.org/10.17533/udea.acbi.14320

Gil, A. dos S. B., & Bove, C. P. (2004). O Gênero Eleocharis R. BR. (Cyperaceae) nos Ecossistemas Aquáticos Temporários da Planicie Costeira. Arquivos Do Museu Nacional, Rio de Janeiro, 62(2), 131–150.

Girlado-Raigoza, M., & Medina-Arroyave, J. D. (2017). Remoción de colorantes de aguas residuales resultantes del tinturado de flores. Ingeniería de Procesos, 1–28. https://repository.eafit.edu.co/bitstream/handle/10784/13228/Manuela_GiraldoRaigoza_2017.pdf?sequence=2&isAllowed=y

Gobena, B., Kinfu, A., & Berhanu, M. (2020). Social and Environmental Concerns of Flower Farms in Central Ethiopia. International Journal of Environmental & Agriculture Research, 6(12), 70–78. https://www.academia.edu/download/65428875/IJOEAR_DEC_2020_23.pdf

Holdridge, L. R. (1982). Ecologia basada en zonas de vida (M. De la cruz (ed.); Segunda reimp.). IICA. http://www.cct.or.cr/contenido/wp-content/uploads/2017/11/Ecologia-Basada-en-Zonas-de-Vida-Libro-IV.pdf

Hussein, A., & Scholz, M. (2018). Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Environmental Science and Pollution Research, 25, 6870–6889. https://doi.org/https://doi.org/10.1007/s11356-017-0992-0

Ilyas, S. Z., Khattak, A. I., Nasir, S. M., Qurashi, T., & Durrani, T. (2010). Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12(3), 291–299. https://doi.org/10.1007/s10098-009-0209-4

Imron, M. F., Kurniawan, S. B., Soegianto, A., & Wahyudianto, F. E. (2019). Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5(8), e02206. https://doi.org/10.1016/j.heliyon.2019.e02206

Iturbe-Arguelles, R. (2010). ¿Qué es la biorremediación? (Primera edición). Fundacion Telmex.

Jaramillo-Gallego, M. L., Agudelo-Cadavid, R. M., & Peñuela-Mesa, G. A. (2016). Optimización del tratamiento de aguas residuales de cultivos de flores usando humedales construidos de flujo subsuperficial horizontal. Revista Facultad Nacional de Salud Pública, 34(1), 20–29. https://doi.org/10.17533/UDEA.RFNSP.V34N1A03

Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012

Krull, R., & Döpkens, E. (2004). Recycling of dyehouse effluents by biological and chemical treatment. Water Science and Technology, 49(4), 311–317. https://doi.org/10.2166/wst.2004.0293

Kruskal, W. H., Wallis, W. A., & Kruskal, W. H. (1952). Use of Ranks in One-Criterion Variance Analysis. American Statistical Association, 47(1), 583–621. https://doi.org/10.2307/2280779

Lakshmi, K. S., Sailaja, V. H., & Reddy, M. A. (2017). Phytoremediation - A Promising Technique in Waste Water Treatment. International Journal of Scientific Research and Management, 5(06), 5480–5489. https://doi.org/10.18535/ijsrm/v5i6.20

Levene, H. (1960). Robust Tests for Equality of Variances. In I. Olkin (Ed.), Contributions to Probability and Statisti (pp. 278–292). Stanford University Pres.

Li, J., Luo, G., He, L. J., Xu, J., & Lyu, J. (2018). Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Critical Reviews in Analytical Chemistry, 48(1), 47–65. https://doi.org/10.1080/10408347.2017.1370670

Li, M., Zhang, W., Xia, Y., & Gao, Y. (2011). Study on removal efficiencies of pollutant from constructed wetland in aquiculture waste water around Poyang Lake. Procedia Environmental Sciences, 10, 2444–2448. https://doi.org/10.1016/j.proenv.2011.09.380

Lucena, F., Duran, A. E., Morón, A., Calderón, E., Campos, C., Gantzer, C., Skraber, S., & Jofre, J. (2004). Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. Journal of Applied Microbiology, 97(5), 1069–1076. https://doi.org/10.1111/j.1365-2672.2004.02397.x

Magalhães, A. F., Ruiz, A. L. T. G., Flach, A., Faria, A. D., Magalhães, E. G., & Amaral, M. D. C. E. (2005). Floral scent of Eleocharis elegans (Kunth) Roem. & Schult. (Cyperaceae). Biochemical Systematics and Ecology, 33(7), 675–679. https://doi.org/10.1016/j.bse.2004.12.004

Ma, J., Wu, S., Shekhar, N. V. R., Biswas, S., & Sahu, A. K. (2020). Determination of Physicochemical Parameters and Levels of Heavy Metals in Food Waste Water with Environmental Effects. Bioinorganic Chemistry and Applications, 2020. https://doi.org/10.1155/2020/8886093

Maguiña-Castillo, L. F. (2017). Determinación de la capacidad fitorremediadora de Lupinus mutabilis Sweet “chocho o tarwi” en suelos contaminados con cadmio (Cd) [Universidad Ricardo Palma]. https://1library.co/document/qo5m330y-determinacion-capacidad-fitorremediadora-lupinus-mutabilis-sweet-chocho-contaminados.html

Malik, A., & Khan, S. (2014). Environmental deterioration and human health: Natural and anthropogenic determinants. Environmental Deterioration and Human Health, 1–421. https://doi.org/10.1007/978-94-007-7890-0

Mejía, D., Zegarra, R., Astudillo, A., & Moscoso, D. (2018). Análisis de partículas sedimentables y niveles de presión sonora en el área urbana y periférica de Cuenca . Revista de La Facultad de Ciencias Químicas. https://www.virtualpro.co/biblioteca/analisis-de-particulas-sedimentables-y-niveles-de-presion-sonora-en-el-area-urbana-y-periferica-de-cuenca

Meng, X., Khoso, S. A., Jiang, F., Zhang, Y., Yue, T., Gao, J., Lin, S., Liu, R., Gao, Z., Chen, P., Wang, L., Han, H., Tang, H., Sun, W., & Hu, Y. (2020). Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Separation and Purification Technology, 235, 116233. https://doi.org/10.1016/j.seppur.2019.116233

Menezes, M. Â. de B. C., Falnoga, I., Šlejkovec, Z., Jaćimović, R., Couto, N., Deschamps, E., & Faganeli, J. (2020). Arsenic in sediments, soil and plants in a remediated area of the iron quadrangle, Brazil, and its accumulation and biotransformation in eleocharis geniculata. Acta Chimica Slovenica, 67(3), 985–991. https://doi.org/10.17344/acsi.2019.5760

Montoya, J. I., Ceballos, L., Casas, J. C., & Morató, J. (2010). Estudio comparativo de la remoción demateria orgánica en humedales construidosde flujo horizontal subsuperficialusando tres especies de macrófitas. EIA, 14, 75–84.

Noreña-Acevedo, A. E., Osorio-Cortes, C. A., & Duran-Rivera, B. (2020). Evaluación de la remoción de color en efluentes de floricultura, por medio de la inmovilización del hongo Orellana . Universidad Catolica de Oriente.

Obando Arango, S., & Villegas, N. (2018). Estandarización de un método de laboratorio para la medición de la demanda béntica de oxígeno. Revista Politécnica, 14(27), 20–29. https://doi.org/10.33571/rpolitec.v14n27a2

Olmos-Márquez, M. A., Ochoa-Rivero, J. M., Alarcón-Herrera, M. T., Santellano-Estrada, E., Vega-Mares, J. H., & Valles-Aragón, M. C. (2020). Performance of a pilot subsurface flow treatment wetland system, used forarsenic removal from reverse osmosis concentrate, in the municipality of Julimes, Chihuahua, Mexico. Ingenieria y Universidad, 24(1), 1–16. https://doi.org/10.11144/Javeriana.iued24.ppsf

Osorio-Loaiza, M. (2022). Perfil de Desarrollo Subregional Subregión Occidente de Antioquia. In Universidad de Antioquia (Vol. 15, Issue 6). https://ctpantioquia.co/wp-content/uploads/2023/11/Perfil-de-desarrollo-Occidente_compressed.pdf

Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air, and Soil Pollution 2007 184:1, 184(1), 105–126. https://doi.org/10.1007/S11270-007-9401-5

Pandey, S. (2006). Water pollution and health. Kathmandu University Medical Journal, 4 NO. 1(13), 128–134.

Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15. https://doi.org/10.1146/annurev.arplant.56.032604.144214

Pineda-Gómez, H. D., & Pimienta-Betancur, A. (2021). Recortes espaciales que configuran el Oriente antioqueño: de la región a la superposición de territorialidades. Territorios, 45, 41–62. https://doi.org/10.12804/revistas.urosario.edu.co/territorios/a.9946

Postolache, O. A., Girão, P. M. B. S., Pereira, J. M. D., & Ramos, H. M. G. (2007). Multibeam optical system and neural processing for turbidity measurement. IEEE Sensors, 7(5), 677–684. https://doi.org/10.1109/JSEN.2007.894896

Ratna, A., & Padhi, B. (2012). Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences, 3(3), 940–955. https://doi.org/10.6088/ijes.2012030133002

Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of Organic Contaminants in Soil and Groundwater. ChemSusChem, 1(8–9), 708–717. https://doi.org/10.1002/CSSC.200800125

Roy-Choudhury, A. K. (2013). Green chemistry and the textile industry. Textile Progress, 45(1), 3–143. https://doi.org/10.1080/00405167.2013.807601

Saier, M. H., & Trevors, J. T. (2010). Phytoremediation. Water Air and Soil Pollution, 205(SUPPL.1), 2008–2010. https://doi.org/10.1007/s11270-008-9673-4

Sanchez-Ortiz, C. (2022, August 6). La importancia del agua para la vida. https://www.cespt.gob.mx/informa/importanciaagua.aspx

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709

Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835

Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167(1–3), 55–63. https://doi.org/10.1016/j.desal.2004.06.113

Sumiahadi, A., & Acar, R. (2018). A review of phytoremediation technology: Heavy metals uptake by plants. Earth and Environmental Science, 142(1), 012023. https://doi.org/10.1088/1755-1315/142/1/012023

Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647–658. https://doi.org/10.1016/S0925-8574(02)00026-5

Team, R. C. (2021). R: A language and environment for statistical computing (3.3.0). R Foundation for Statistical Computing. https://www.r-project.org/.

Tizaoui, C., Bouselmi, L., Mansouri, L., & Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1–2), 316–324. https://doi.org/10.1016/j.jhazmat.2006.09.023

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Journal of Economic Entomology, 1(6), 80–83. https://doi.org/10.1093/jee/39.2.269.

Wang, J., Zhang, Q., Zhang, Y. N., Fu, M., Ding, Y., Gao, X., ... & Bai, S. (2023). Efficient removal mechanism of an electrical conductivity-enhanced constructed wetlands under particle accumulated conditions. Journal of Cleaner Production, 411, 137257. doi: 10.1016/j.jclepro.2023.137257.

Qomariyah, S., Utomo, B., & Wahyudi, A. H. (2022, July). Constructed wetlands with Cyperus alternifolius as a sustainable solution for household greywater treatment. In IOP Conference Series: Earth and Environmental Science (Vol. 1065, No. 1, p. 012025). IOP Publishing. doi: 10.1088/1755-1315/1065/1/012025.

Idris, N. N., Chua, L. H., Mustaffa, Z., Das, S., & Takaijudin, H. (2024). A review study on the association between hydraulic performance and treatment effectiveness in free surface flow constructed wetlands. Ecological Engineering, 203, 107258. doi: 10.1016/j.ecoleng.2024.107258.

Published

2024-09-25

How to Cite

Benjumea Hoyos, C. A., Carmona Loaiza, M. Y. ., & Rojas, J. M. (2024). Assessment of the Potential of Eleocharis elegans Using Constructed Wetlands in the Phytoremediation of Colored Wastewater from the Flower Agroindustry. Revista Innovación Digital Y Desarrollo Sostenible - IDS, 5(1), 66 - 80. https://doi.org/10.47185/27113760.v5n1.154

Issue

Section

Artículos originales