La neurobiónica como una disciplina emergente: Aportaciones al futuro de las ciencias de la salud y las ciencias sociales

Autores/as

  • Nicolás Parra-Bolaños Asociación Educar para el Desarrollo Humano, Laboratorio de Neurociencias y Educación, Buenos Aires, Argentina.
  • Sindy Tatiana Jaramillo Vélez Tecnológico de Antioquia – Institución Universitaria, Programa de Trabajo Social, Medellín, Colombia.
  • Stefany Sierra Gómez Tecnológico de Antioquia – Institución Universitaria, Programa de Trabajo Social, Medellín, Colombia.

DOI:

https://doi.org/10.47185/27113760.v1n2.27

Palabras clave:

Neurobiónica, Ingeniería, Neurociencias, Bibliometría, Revisión

Resumen

La neurobiónica es una ciencia que se encuentra limitando entre las ciencias de la salud, las ingenierías y las neurociencias, tomando elementos de dichas disciplinas cientificas, y llegando a configurarse como una ciencia relativamente nueva, lo que ha provocado que sea un campo muy poco conocido, aún entre los profesionales de las ciencias de la salud, sin embargo, no por ello deja de ser una disciplina que por sí misma es una ciencia básica, pero también, una ciencia aplicada. El presente estudio ha empleado dos softwares: CASP y STROBE, para hacer un sondeo por las cuarenta bases de datos de los Institutos Nacionales de la Salud de los Estados Unidos de Norteamérica, con el objeto de revisar los últimos diez años en lo referente a literatura cientifica sobre neurobiónica. Se analizaron seis diferentes ecuaciones para la búsqueda y se aplicaron criterios de inclusión y exclusión. El estudio arrojó información y hallazgos que indican que la neurobiónica es un campo sumamente prometedor, tanto para hacer aportaciones para las ciencias de la salud como para las ciencias sociales, dada su enorme versatilidad y capacidad de ejecución de trabajos transdisciplinarios, pues se encuentra en la frontera del conocimiento humano, hasta el punto de obligarnos a repensar la definición de lo que es la especie humana a la luz del uso de tecnologías integradas al sistema nervioso central.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arendsen, L. J., Hugh-Jones, S., & Lloyd, D. M. (2018). Transcranial Alternating Current Stimulation at Alpha Frequency Reduces Pain When the Intensity of Pain is Uncertain. The Journal of Pain: Official Journal of the American Pain Society, 19(7), 807–818. https://doi.org/10.1016/j.- jpain.2018.02.014

Barker-Collo, S., Krishnamurthi, R., Theadom, A., Jones, K., Starkey, N., & Feigin, V. (2019). Incidence of stroke and traumatic brain injury in New Zealand: contrasting the BIONIC and ARCOS-IV studies. The New Zealand Medical Journal, 132(1502), 40–54.

Bensmaia, S. J. (2015). Biological and bionic hands: natural neural coding and artificial perception. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 370(1677), 20140209. https://doi.org/10.1098/rstb.2014.0209

Bergmann, J., Krewer, C., Jahn, K., & Müller, F. (2018). Robot-assisted gait training to reduce pusher behavior: A randomized controlled trial. Neurology, 91(14), e1319–e1327. https://doi.org/10.1212/WNL.0000000000006276

Chesters, J., Möttönen, R., & Watkins, K. E. (2018). Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain: A Journal of Neurology, 141(4), 1161–1171. https://doi.org/10.1093/brain/awy011

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

Chesters, J., Möttönen, R., & Watkins, K. E. (2018). Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain: A Journal of Neurology, 141(4), 1161–1171.

Duffley, G., Anderson, D. N., Vorwerk, J., Dorval, A. D., & Butson, C. R. (2019). Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated. Journal of Neural Engineering, 16(6), 066024. https://doi.org/10.1088/1741-2552/ab3c95

Eisemann, T., Costa, B., Strelau, J., Mittelbronn, M., Angel, P., & Peterziel, H. (2018). An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer, 18(1), 103. https://doi.org/10.1186/s12885-018-4007-4

Elder, G. J., Colloby, S. J., Firbank, M. J., McKeith, I. G., & Taylor, J. P. (2019). Consecutive sessions of transcranial direct current stimulation do not remediate visual hallucinations in Lewy body dementia: a randomised controlled trial. Alzheimer's Research & Therapy, 11(1), 9. https://doi.org/10.1186/s13195-018-0465-9

Erdő, F., & Krajcsi, P. (2019). Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Frontiers in Aging Neuroscience, 11, 196. https://doi.org/10.3389/fnagi.2019.00196

Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., & Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170. https://doi.org/10.1016/j.brainresbull.2018.10.009

Gilmore, G., Murgai, A., Nazer, A., Parrent, A., & Jog, M. (2019). Zona incerta deep-brain stimulation in orthostatic tremor: efficacy and mechanism of improvement. Journal of Neurology, 266(11), 2829–2837. https://doi.org/10.1007/s00415-019-09505-8

Herrman, H., Egge, A., Konglund, A. E., Ramm-Pettersen, J., Dietrichs, E., & Taubøll, E. (2019). Anterior thalamic deep brain stimulation in refractory epilepsy: A randomized, double-blinded study. Acta Neurologica Scandinavica, 139(3), 294–304. https://doi.org/10.1111/ane.13047

Hu, X. L., Tong, R. K., Ho, N. S., Xue, J. J., Rong, W., & Li, L. S. (2015). Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neuro- Rehabilitation and neural repair, 29(8), 767–776. https://doi.org/10.1177/1545968314565510

Indahlastari, A., Albizu, A., Nissim, N. R., Traeger, K. R., O'Shea, A., & Woods, A. J. (2019). Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation. Brain Stimulation, 12(2), 267–274. https://doi.org/10.1016/j.brs.2018.10.016

Barker-Collo, S., Krishnamurthi, R., Theadom, A., Jones, K., Starkey, N., & Feigin, V. (2019). Incidence of stroke and traumatic brain injury in New Zealand: contrasting the BIONIC and ARCOS-IV studies. The New Zealand Medical Journal, 132(1502), 40–54.

Jung, R., Abbas, J. J., Kuntaegowdanahalli, S., & Thota, A. K. (2018). Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers. Bioelectronics in Medicine, 1(1), 55–69. https://doi.org/10.2217/bem-2017-0009

Lee, W., Kim, S., Kim, B., Lee, C., Chung, Y. A., Kim, L., & Yoo, S. S. (2017). Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface. PloS One, 12(6), e0178476. https://doi.org/10.1371/journal.pone.0178476

Li, J., Romero-Garcia, R., Suckling, J., & Feng, L. (2019). Habitual tea drinking modulates brain efficiency: evidence from brain connectivity evaluation. Aging, 11(11), 3876–3890. https://doi.org/10.18632/aging.102023

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

Liang, Y., Wang, L., & Yuan, T. F. (2018). Targeting Withdrawal Symptoms in Men Addicted to Methamphetamine With Transcranial Magnetic Stimulation: A Randomized Clinical Trial. JAMA Psychiatry, 75(11), 1199–1201.

Malling, A., Morberg, B. M., Wermuth, L., Gredal, O., Bech, P., & Jensen, B. R. (2018). Effect of trans- cranial pulsed electromagnetic fields (T-PEMF) on functional rate of force development and movement speed in persons with Parkinson's disease: A randomized clinical trial. PloS One, 13(9), e0204478. https://doi.org/10.1371/journal.pone.0204478

Payne, S. C., Furness, J. B., & Stebbing, M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nature Reviews. Gastroenterology & Hepatology, 16(2), 89–105. https://doi.org/10.1038/s41575-018-0078-6

Rabipour, S., Wu, A. D., Davidson, P., & Iacoboni, M. (2018). Expectations may influence the effects of transcranial direct current stimulation. Neuropsychologia, 119, 524–534. https://doi.org/10.1016/j.neuropsychologia.2018.09.005

Sivaramakrishnan, A., & Madhavan, S. (2018). Absence of a Transcranial Magnetic Stimulation-Induced Lower Limb Corticomotor Response Does Not Affect Walking Speed in Chronic Stroke Survivors. Stroke, 49(8), 2004–2007. https://doi.org/10.1161/STROKEAHA.118.021718

Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., & Gallimberti, L. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology: The Journal of The European College of Neuropsychopharmacology, 26(1), 37–44. https://doi.org/10.1016/j.euroneuro.2015.11.011

Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., & Gallimberti, L. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology: The Journal of The European College of Neuropsychopharmacology, 26(1), 37–44. https://doi.org/10.1016/j.euroneuro.2015.11.011

Tröster, A. I., Jankovic, J., Tagliati, M., Peichel, D., & Okun, M. S. (2017). Neuropsychological outcomes from constant current deep brain stimulation for Parkinson's disease. Movement Disorders: Official Journal of The Movement Disorder Society, 32(3), 433–440. https://doi.org/10.1002/mds.26827

Van-Der-Helm, M. W., Van-Der-Meer, A. D., Eijkel, J. C., Van-Den-Berg, A., & Segerink, L. I. (2016). Microfluidic organ-on-chip technology for

blood-brain barrier research. Tissue Barriers, 4(1), e1142493. https://doi.org/10.1080/21688370.2016.1142493

VanSickle, D., Volk, V., Freeman, P., Henry, J., Baldwin, M., & Fitzpatrick, C. K. (2019). Electrode Placement Accuracy in Robot-Assisted Asleep Deep Brain Stimulation. Annals of Biomedical Engineering, 47(5), 1212–1222. https://doi.org/10.1007/s10439-019-02230-3

Xie, C., Liu, J., Fu, T. M., Dai, X., Zhou, W., & Lieber, C. M. (2015). Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 14(12), 1286–1292. https://doi.org/10.1038/nmat4427

Yu, S. (2016). New challenge for bionics--brain-inspired computing. Zoological Research, 37(5), 261–262. https://doi.org/10.13918/j.issn.2095-8137.2016.5.261

Descargas

Publicado

2021-02-05

Cómo citar

Parra-Bolaños, N., Jaramillo Vélez, S. T., & Sierra Gómez, S. (2021). La neurobiónica como una disciplina emergente: Aportaciones al futuro de las ciencias de la salud y las ciencias sociales. Revista Innovación Digital Y Desarrollo Sostenible - IDS, 1(2), 46 - 55. https://doi.org/10.47185/27113760.v1n2.27

Número

Sección

Artículos originales