La Neurobionics as an Emerging Discipline: Contributions to the Future of Health Sciences and Social Sciences

Authors

  • Nicolás Parra-Bolaños Asociación Educar para el Desarrollo Humano, Laboratorio de Neurociencias y Educación, Buenos Aires, Argentina.
  • Sindy Tatiana Jaramillo Vélez Tecnológico de Antioquia – Institución Universitaria, Programa de Trabajo Social, Medellín, Colombia.
  • Stefany Sierra Gómez Tecnológico de Antioquia – Institución Universitaria, Programa de Trabajo Social, Medellín, Colombia.

DOI:

https://doi.org/10.47185/27113760.v1n2.27

Keywords:

Neurobionics, Engineering, Neurosciences, Bibliometrics, Review

Abstract

Neurobionics is a science that is bordering between the health sciences, engineering and neurosciences, taking elements from these scientific disciplines, becoming a relatively new science, which has caused it to be a very little known field, even among health science professionals, however, they are still a discipline that is itself a basic science, but also an applied science. The present study has used two softwares: CASP and STROBE, to conduct a survey of the forty databases of the National Institutes of Health of the United States of North America, in order to review the last ten years in relation to literature scientist on neurobionics. Six different equations were analyzed for the search and inclusion and exclusion criteria were applied. The study yielded information and findings that indicate that neurobionics is an extremely promising field, both for making contributions to the health sciences and for the social sciences, given its enormous versatility and capacity to carry out transdisciplinary work, since it is in the frontier of human knowledge, to the point of forcing us to rethink the definition of what the human species is in light of the use of technologies integrated into the central nervous system.

Downloads

Download data is not yet available.

References

Arendsen, L. J., Hugh-Jones, S., & Lloyd, D. M. (2018). Transcranial Alternating Current Stimulation at Alpha Frequency Reduces Pain When the Intensity of Pain is Uncertain. The Journal of Pain: Official Journal of the American Pain Society, 19(7), 807–818. https://doi.org/10.1016/j.- jpain.2018.02.014

Barker-Collo, S., Krishnamurthi, R., Theadom, A., Jones, K., Starkey, N., & Feigin, V. (2019). Incidence of stroke and traumatic brain injury in New Zealand: contrasting the BIONIC and ARCOS-IV studies. The New Zealand Medical Journal, 132(1502), 40–54.

Bensmaia, S. J. (2015). Biological and bionic hands: natural neural coding and artificial perception. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 370(1677), 20140209. https://doi.org/10.1098/rstb.2014.0209

Bergmann, J., Krewer, C., Jahn, K., & Müller, F. (2018). Robot-assisted gait training to reduce pusher behavior: A randomized controlled trial. Neurology, 91(14), e1319–e1327. https://doi.org/10.1212/WNL.0000000000006276

Chesters, J., Möttönen, R., & Watkins, K. E. (2018). Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain: A Journal of Neurology, 141(4), 1161–1171. https://doi.org/10.1093/brain/awy011

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

Chesters, J., Möttönen, R., & Watkins, K. E. (2018). Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter. Brain: A Journal of Neurology, 141(4), 1161–1171.

Duffley, G., Anderson, D. N., Vorwerk, J., Dorval, A. D., & Butson, C. R. (2019). Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated. Journal of Neural Engineering, 16(6), 066024. https://doi.org/10.1088/1741-2552/ab3c95

Eisemann, T., Costa, B., Strelau, J., Mittelbronn, M., Angel, P., & Peterziel, H. (2018). An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer, 18(1), 103. https://doi.org/10.1186/s12885-018-4007-4

Elder, G. J., Colloby, S. J., Firbank, M. J., McKeith, I. G., & Taylor, J. P. (2019). Consecutive sessions of transcranial direct current stimulation do not remediate visual hallucinations in Lewy body dementia: a randomised controlled trial. Alzheimer's Research & Therapy, 11(1), 9. https://doi.org/10.1186/s13195-018-0465-9

Erdő, F., & Krajcsi, P. (2019). Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Frontiers in Aging Neuroscience, 11, 196. https://doi.org/10.3389/fnagi.2019.00196

Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., & Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170. https://doi.org/10.1016/j.brainresbull.2018.10.009

Gilmore, G., Murgai, A., Nazer, A., Parrent, A., & Jog, M. (2019). Zona incerta deep-brain stimulation in orthostatic tremor: efficacy and mechanism of improvement. Journal of Neurology, 266(11), 2829–2837. https://doi.org/10.1007/s00415-019-09505-8

Herrman, H., Egge, A., Konglund, A. E., Ramm-Pettersen, J., Dietrichs, E., & Taubøll, E. (2019). Anterior thalamic deep brain stimulation in refractory epilepsy: A randomized, double-blinded study. Acta Neurologica Scandinavica, 139(3), 294–304. https://doi.org/10.1111/ane.13047

Hu, X. L., Tong, R. K., Ho, N. S., Xue, J. J., Rong, W., & Li, L. S. (2015). Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neuro- Rehabilitation and neural repair, 29(8), 767–776. https://doi.org/10.1177/1545968314565510

Indahlastari, A., Albizu, A., Nissim, N. R., Traeger, K. R., O'Shea, A., & Woods, A. J. (2019). Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation. Brain Stimulation, 12(2), 267–274. https://doi.org/10.1016/j.brs.2018.10.016

Barker-Collo, S., Krishnamurthi, R., Theadom, A., Jones, K., Starkey, N., & Feigin, V. (2019). Incidence of stroke and traumatic brain injury in New Zealand: contrasting the BIONIC and ARCOS-IV studies. The New Zealand Medical Journal, 132(1502), 40–54.

Jung, R., Abbas, J. J., Kuntaegowdanahalli, S., & Thota, A. K. (2018). Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers. Bioelectronics in Medicine, 1(1), 55–69. https://doi.org/10.2217/bem-2017-0009

Lee, W., Kim, S., Kim, B., Lee, C., Chung, Y. A., Kim, L., & Yoo, S. S. (2017). Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface. PloS One, 12(6), e0178476. https://doi.org/10.1371/journal.pone.0178476

Li, J., Romero-Garcia, R., Suckling, J., & Feng, L. (2019). Habitual tea drinking modulates brain efficiency: evidence from brain connectivity evaluation. Aging, 11(11), 3876–3890. https://doi.org/10.18632/aging.102023

De-La-Peña, C., Fernández-Medina, J. M., Parra-Bolaños, N., & Martinez-Restrepo, Ó. A. (2016). Neuropsychological study in patients with Parkinson's disease: the effects of deep brain stimulation. Revista de Neurologia, 62(4), 152–156.

Liang, Y., Wang, L., & Yuan, T. F. (2018). Targeting Withdrawal Symptoms in Men Addicted to Methamphetamine With Transcranial Magnetic Stimulation: A Randomized Clinical Trial. JAMA Psychiatry, 75(11), 1199–1201.

Malling, A., Morberg, B. M., Wermuth, L., Gredal, O., Bech, P., & Jensen, B. R. (2018). Effect of trans- cranial pulsed electromagnetic fields (T-PEMF) on functional rate of force development and movement speed in persons with Parkinson's disease: A randomized clinical trial. PloS One, 13(9), e0204478. https://doi.org/10.1371/journal.pone.0204478

Payne, S. C., Furness, J. B., & Stebbing, M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nature Reviews. Gastroenterology & Hepatology, 16(2), 89–105. https://doi.org/10.1038/s41575-018-0078-6

Rabipour, S., Wu, A. D., Davidson, P., & Iacoboni, M. (2018). Expectations may influence the effects of transcranial direct current stimulation. Neuropsychologia, 119, 524–534. https://doi.org/10.1016/j.neuropsychologia.2018.09.005

Sivaramakrishnan, A., & Madhavan, S. (2018). Absence of a Transcranial Magnetic Stimulation-Induced Lower Limb Corticomotor Response Does Not Affect Walking Speed in Chronic Stroke Survivors. Stroke, 49(8), 2004–2007. https://doi.org/10.1161/STROKEAHA.118.021718

Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., & Gallimberti, L. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology: The Journal of The European College of Neuropsychopharmacology, 26(1), 37–44. https://doi.org/10.1016/j.euroneuro.2015.11.011

Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., & Gallimberti, L. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology: The Journal of The European College of Neuropsychopharmacology, 26(1), 37–44. https://doi.org/10.1016/j.euroneuro.2015.11.011

Tröster, A. I., Jankovic, J., Tagliati, M., Peichel, D., & Okun, M. S. (2017). Neuropsychological outcomes from constant current deep brain stimulation for Parkinson's disease. Movement Disorders: Official Journal of The Movement Disorder Society, 32(3), 433–440. https://doi.org/10.1002/mds.26827

Van-Der-Helm, M. W., Van-Der-Meer, A. D., Eijkel, J. C., Van-Den-Berg, A., & Segerink, L. I. (2016). Microfluidic organ-on-chip technology for

blood-brain barrier research. Tissue Barriers, 4(1), e1142493. https://doi.org/10.1080/21688370.2016.1142493

VanSickle, D., Volk, V., Freeman, P., Henry, J., Baldwin, M., & Fitzpatrick, C. K. (2019). Electrode Placement Accuracy in Robot-Assisted Asleep Deep Brain Stimulation. Annals of Biomedical Engineering, 47(5), 1212–1222. https://doi.org/10.1007/s10439-019-02230-3

Xie, C., Liu, J., Fu, T. M., Dai, X., Zhou, W., & Lieber, C. M. (2015). Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 14(12), 1286–1292. https://doi.org/10.1038/nmat4427

Yu, S. (2016). New challenge for bionics--brain-inspired computing. Zoological Research, 37(5), 261–262. https://doi.org/10.13918/j.issn.2095-8137.2016.5.261

Published

2021-02-05

How to Cite

Parra-Bolaños, N., Jaramillo Vélez, S. T., & Sierra Gómez, S. (2021). La Neurobionics as an Emerging Discipline: Contributions to the Future of Health Sciences and Social Sciences. Revista Innovación Digital Y Desarrollo Sostenible - IDS, 1(2), 46 - 55. https://doi.org/10.47185/27113760.v1n2.27

Issue

Section

Artículos originales