Evaluation of The Pedigree of Embryos Implanted In Embryo Transfer Programs.

Authors

  • Ana Cristina Herrera Ríos
  • Nancy Rodríguez Colorado
  • Daniel Antonio Hernández Villamizar

DOI:

https://doi.org/10.47185/27113760.v3n1.81

Keywords:

Consanguinity, Artificial insemination, Progeny

Abstract

Genealogy studies are born out of an interest in clarifying the dilemma “where we come from and where we are going.” In this situation, the records of sire, dam and grandparents (paternal and maternal) are consolidated, thus initiating a genealogical tree. The lack of consolidation of the genealogical registry in the production systems becomes an impediment for the pedigree analysis and the performance of genetic evaluations. The objective this work is to evaluate the genealogy of the animals involved in the matings for the generation of implanted embryos, using the embryo transfer technique in the GESTAR
project. The database had 741 animal records and a depth of 5 generations. Softwares, Pedigree Viewer version 6.5 and CFC: Tool For Monitoring Genetic Diversity version 1.0 were used to perform genealogical analysis, renumber the records of the
individuals and evaluate the depth of the pedigree. Results and conclusions: Of the 741 records of animals that comprise 5 generations, 551progeny were identified, 181 father’s records and 282 records of mothers classified in 184 founding individuals
and 557 non-founders, only 6 individuals with father identification and 551 with father and known mother, 74 groups of complete siblings with an average size per family of 3.72 animals, a maximum of 20 and a minimum of 2 and finally 42 of them were
identified as consanguineous. The evaluated genealogy presents a high connectivity between individuals and has adequate depth to be used in genetic improvement or embryo transfer programs, thus increasing the reliability of breeding values and other parameters of interest.

Downloads

Download data is not yet available.

References

Amaya, M., Martínez, S., Cerón-Muñoz, M. (2020). Evaluaciones genéticas en bovinos por medio del uso del mejor predictor lineal insesgado genómico en una etapa. Ciencia y Tecnología Agropecuaria, 21(1), 19-31.

Bejarano, D. (2016). Estudio de asociación genómica para características de crecimiento en las razas bovinas Criollas Blanco Orejinegro y Romosinuano. 183. http://www.bdigital.unal.edu.co/54717/.

Boichard, D., Maignel, L., Verrier, É. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 5-23.

Borowska, A., Szwaczkowski T. (2015). Pedigree analysis of Polish warm blood horses participating in riding performance tests. Canadian Journal of Animal Science, 95, 21–29.

Bijma, P., Van Arendonk, J., Woolliams, J., (2001). Predicting rates of inbreeding for livestock schemes. J. Anim. Sci., 79: 840- 853

Burrow, H. (1993). The effects of inbreeding in beef cattle. Anim. Breed. Abstr., 65: 477-495.

Chen, J., Wang, Y., Zhang, Y., Sun, D., Zhang, S., Zhang, Y. (2011). Evaluation of breeding programs combining genomic information in Chinese Holstein. Agricultural Sciences in China, 10(12), 1949-1957. doi:10.1016/ S1671- 2927(11)60196-X.

Elzo, M., Thomas, M., Johnson, D., Martinez, C., Lamb, G., Rae, D., Driver, J. (2015). Genetic parameters and predictions for direct and maternal growth traits in a multibreed AngusBrahman cattle populationusing genomic-polygenic and polygenic models. Livestock Science, 178, 43-51. doi:10.1016/j.livsci.2015.06.015.

Falcao, S., Filho M., Magnabosco, U., Bozzi, R., Lima, M. (2001). Efeitos da endogamia sobre características de reproducao, crescimento e valores genéticos aditivos de bovinos de raca Pardo-Suíça. Rev. Bras. Zootecn., 30: 83-92.

Gutiérrez, J., Altarriba, J., Díaz, C., Quintanilla, R., Cañon, J., Piedrafita, J. (2003). Pedigree análisis of eight Spanish beef cattle breeds. Genet. Sel. Evol., 35: 43-63.

Gutiérrez, J., Goyache, F. (2005). A note on ENDOG: a computer program for analysis pedigree information. J. Anim. Breed. Genet., 122: 172-176.

Hayes, B., and Miller, S., (2007). Mate selection strategies to exploit across-and-within-breed dominance variation. Journal of Animal Breeding and Genetics 117:347-359.

Hayes, B., Goddard, M. (2010). Genome-wide association and genomic selection in animal breeding. Genome, 53(11), 876– 883. https://doi.org/10.1139/G10-076.

Kadlecík, O., Pavlík I. (2012) Genealogical analysis in small populations: The case of four Slovak beef cattle breeds. Slovak J Anim Sci 45:111-117.

Kinghorn, B., Kinghorn, A. (2010). Pedigree Viewer 6.5. University of New England, Armidale, Australia.

Martínez, R., García, D., Gallego, J., Onofre, G., Pérez, J., Cañón, J. (2008). Genetic variability in Colombian Creole cattle populations estimated by pedigree information. Journal of animal science, 86(3), 545-552.

Meuwissen, T., Luo Z. (1992). Computing inbreeding coefficients in large populations. Genetics Selection Evolution, 24, 305–313.

Molina, A., Rodero, A., Valera, M. (1995). Análisis genético de los niveles de consanguinidad en la raza Retinta. Arch. Zootec., 44: 257-265.

Pjontek, J., Kadlecik, O., Kasarda, R., Horny M. (2012). Pedigree analysis in four Slovak endangered horse breeds. Czech Journal of Animal Science, 57, 54–64.

Queiroz, S., Lobo, R., Martinez, M. (1993). Efeito da endogamia sobre algunas características de importancia económica na raca gir. Rev bras zoootec., v.22, p773-786.

Ruíz-Flores, A., Núñez-Domínguez, R., Ramírez-Valverde, R., Domínguez-Viveros, J., Mendoza-Domínguez, M. y Martínez-Cuevas, E. (2006). Niveles y efectos de la consanguinidad en variables de crecimiento y reproductivas en bovinos Tropicarne y Suizo. Agrociencia, 40: 289-301.

Santana, M., Oliveira, P., Eler, J., Gutiérrez, J., Ferraz J. (2012). Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchiguiana and Bonsmara breeds. J Anim Sci;90:99-108.

Santana, M., Pereira, R., Bignardi, A., Ayres D., Menezes, G., Silva, L.(2016). Structure and genetic diversity of Brazilian Zebu cattle breeds assessed by pedigree analysis. Livest Sci;187:6-15.

Sargolzaei, M., Iwaisaki, H., Colleau, J. (2006, August). CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th world congress on genetics applied to livestock production (pp. 13-18). Belo Horizonte, Minas Gerais.

Sheikhlou, M., Abbasi, M. (2016). Genetic diversity of Iranian Lori-Bakhtiari sheep assessed by pedigree analysis. Small Ruminant Res; 141:99-105.

Szwaczkowski, T., Wezyk, S., Stanislawska-Barczak, E., Badowski, J., Bielinska, H., Wolc, A. (2007). Genetic variability of body weight in two goose strains under longterm selection. Journal of Applied Genetics, 48, 253–260.

Vanraden, P., Lawlor, T., Hoeschele, I. (1992). Use of reproductive technology to estimate variances and predict effects of gene interactions. Journal of Dairy Science 75; 2892- 290.

Vargas, B. y Gamboa, G. (2008). Estimación de tendencias genéticas e interacción genotipo x ambiente en ganado lechero de costa rica. Técnica Pecuaria en México 46: 371-386.

Vasallo, J., Díaz, C. y García M. (1986). A note on the population structure of the Avileña breed of cattle in Spain. Livest. Prod. Sci., 15: 285-288.

Vilches, L. (2018). Métodos de numeración y remuneración genealógica. Liber Factory

Velásquez, J., Mendoza, G., Corrale, J., Parra, M., Medina, A., Izquierdo, C., González A, J. (2016). Association of morphometric measurements with rump fat in jumping horses in an equestrian school in Bogotá. Revista de Medicina Veterinaria, (32), 67-77.

Published

2022-07-01

How to Cite

Herrera Ríos, A. C., Rodríguez Colorado, N., & Hernández Villamizar, D. A. (2022). Evaluation of The Pedigree of Embryos Implanted In Embryo Transfer Programs. Revista Innovación Digital Y Desarrollo Sostenible - IDS, 3(1), 17 - 22. https://doi.org/10.47185/27113760.v3n1.81

Issue

Section

Artículos originales

Most read articles by the same author(s)