Revisión Sobre el Análisis y Protección de Tuberías Enterradas Ante Cargas Sobre la Superficie del Terreno
DOI:
https://doi.org/10.47185/27113760.v3n1.87Palavras-chave:
Análisis numérico, Interacción suelo-tubería, Protección de tuberías enterradas, Métodos de los elementos finitosResumo
Las tuberías enterradas son necesarias para el transporte de productos (agua potable, desechos residuales, hidrocarburos, entre otros) de un punto geográfico a otro. Existen diferentes criterios para seleccionar la calidad, espesor y material de la tubería, que combinados tienen que garantizar que el esfuerzo máximo admisible sea mayor que el esfuerzo aplicado sobre el material. En ocasiones, se requiere del paso de vehículos (no contemplados en el diseño original) sobre la red existente, lo que obliga a implementar soluciones adicionales para proteger la red. Este trabajo tiene la finalidad de hacer una revisión sobre el análisis y protección de tuberías enterradas ante cargas sobre la superficie del terreno, mencionando los métodos de análisis, tendencias de protección y exigencias en la normativa nacional e internacional. Finalmente se concluye el problema de interacción suelo-tubería es de gran complejidad y que la inclusión de protección mecánica entre la superficie del terreno y la tubería influye en el grado de protección de la tubería
Downloads
Referências
Ahmed, M. R., Tran, V. D. H., & Meguid, M. A. (2015). On the Role of Geogrid Reinforcement in Reducing Earth Pressure on Buried Pipes: Experimental and Numerical Investigations. Soils and Foundations, 55(3), 588–599. https://doi.org/10.1016/j.sandf.2015.04.010
Almohammed, W. H., Fattah, M. Y., & Rasheed, S. E. (2018). Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure. World Academy of Science, Engineering and Technology International Journal of Geotechnical and Geological Engineering 12(3), 256–262.
Ashari Ghomi, M. 2018. “Large-scale triaxial testing of sustainable TDA backfilling alternatives.” Master’s thesis, Dalhousie University
Ashari, M., and H. El Naggar. 2017. “Evaluation of the physical properties of TDA-Sand mixtures.” In GeoOttawa, the 70th Canadian Geotechnical Conf. Ottawa: Canadian Geotechnical Society
Alotaibi, E., Omar, M., Shanableh, A., Zeiada, W., Fattah, M. Y., Tahmaz, A., & Arab, M. G. (2021). Geogrid bridging over existing shallow flexible PVC buried pipe – Experimental study. Tunnelling and Underground Space Technology, 113. https://doi.org/10.1016/j.tust.2021.103945
Bartlett, S. F., Lingwall, B. N., & Vaslestad, J. (2015). Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS geofoam. Geotextiles and Geomembranes, 43(5), 450–461. https://doi.org/10.1016/j.geotexmem.2015.04.019
Bayton, S. M., Elmrom, T., & Black, J. A. (2018). Centrifuge modelling utility pipe behaviour subject to vehicular loading. Physical Modelling in Geotechnics, 1(July), 163–168. https://doi.org/10.1201/9780429438660-17
Bildik, S. (2012). Parametric studies of buried pipes using finite element analysis. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30. June 2012, Near East University, Nicosia, North Cyprus.
Bildik, S., & Laman, M. (2020). Effect of geogrid reinforcement on soil - structure – pipe interaction in terms of bearing capacity, settlement and stress distribution. Geotextiles and Geomembranes, 48(6), 844–853. https://doi.org/10.1016/j.geotexmem.2020.07.004
Bryden, P., El Naggar, H., & Valsangkar, A. (2015). SoilStructure Interaction of Very Flexible Pipes: Centrifuge and Numerical Investigations. International Journal of Geomechanics, 15(6), 04014091. https://doi.org/10.1061/(asce)gm.1943-5622.0000442
Demirci, H. E., Bhattacharya, S., Karamitros, D., & Alexander, N. (2018). Experimental and numerical modelling of buried pipelines crossing reverse faults. Soil Dynamics and Earthquake Engineering, 114(June), 198–214. https://doi.org/10.1016/j.soildyn.2018.06.013
Dezfooli, M. S., Abolmaali, A., Park, Y., Razavi, M., & Bellaver, F. (2015). Staged Construction Modeling of Steel Pipes Buried in Controlled Low-Strength Material Using 3D Nonlinear Finite-Element Analysis. International Journal of Geomechanics, 15(6), 04014088. https://doi.org/10.1061/(asce)gm.1943-5622.0000436
Discover Water. (2021). Leaking pipes. https://discoverwater.co.uk/leaking-pipes
Ecopetrol. (2013). Tipos de interferencias y sus parámetros identificados. Gestión institucional de gerencia con terceros.
Elshesheny, A., Mohamed, M., Nagy, N. M., & Sheehan, T. (2019). Numerical behaviour of buried flexible pipes in geogrid-reinforced soil under cyclic loading. Computers and Geotechnics, 122(July 2019), 103493. https://doi.org/10.1016/j.compgeo.2020.103493
Elshesheny, A., Mohamed, M., & Sheehan, T. (2020). Protection of buried rigid pipes using geogrid-reinforced soil systems subjected to cyclic loading. Soil Dynamics and Earthquake Engineering, 135. https://doi.org/10.1016/j.soildyn.2020.106210
Emami Saleh, A., Hojat Jalali, H., Pokharel, A., & Abolmaali, A. (2021). Deformation of buried large diameter steel pipes during staged construction and compaction-case study and finite element analysis. Transportation Geotechnics, 31. https://doi.org/10.1016/j.trgeo.2021.100649
Fattah, M. Y., Hassan, W. H., & Rasheed, S. E. (2018). Behavior of flexible buried pipes under geocell reinforced subbase subjected to repeated loading. International Journal of Geotechnical Earthquake Engineering, 9(1), 22–41. https://doi.org/10.4018/IJGEE.2018010102
Fattah, M. Y., Zbar, B. S., & Al-Kalali, H. H. M. (2016). Three-dimensional finite element simulation of the buried pipe problem in geogrid reinforced soil. Journal of Engineering, 22(5), 60–73. https://joe.uobaghdad.edu.iq/index.php/main/article/view/218
Goltabar, A. M., & Shekarchi, M. (2010). Investigation of traffic load on the buried pipeline by using of real scale experiment and plaxis-3D software. Research Journal of Applied Sciences, Engineering and Technology, 2(2), 107– 113 .
González, H., Reyes, G. (2014). Análisis comparativo de la teoría de Marston para tuberías enterradas y la modelación numérica con elementos finitos. Universidad Nacional de Colombia.
Hegde, A. M., & Sitharam, T. G. (2015). Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells. Geotextiles and Geomembranes, 43(5), 372–381. https://doi.org/10.1016/j.geotexmem.2015.04.010
Hegde, A., Kadabinakatti, S., & Sitharam, T. G. (2014). Protection of Buried Pipelines Using a Combination of Geocell and Geogrid Reinforcement: Experimental Studies. January, 289–298. https://doi.org/10.1061/9780784413401.029
Humphrey DN. Effectiveness of design guidelines for use of Tire Derived Aggregate as lightweight embankment fill. Recycled materials in geotechnics (GSP 127). In: Proceedings of ASCE civil engineering conference and exposition; 2004
Hsu, Y. S. (2020). Finite element approach of the buried pipeline on tensionless foundation under random ground excitation. Mathematics and Computers in Simulation, 169, 149–165. https://doi.org/10.1016/j.matcom.2019.09.004
Karmaker, R. (2019). A Comparative Study on a Buried Pipeline in different soil conditions under static load using ABAQUS Engineering 9790: Subsea Pipeline Engineering Term Project On A Comparative Study on a Buried Pipeline in different soil conditions under static load usi. April 2017.
Khademi-Zahedi, R. (2019). Application of the finite element method for evaluating the stress distribution in buried damaged polyethylene gas pipes. Underground Space (China), 4(1), 59–71. https://doi.org/10.1016/j.undsp.2018.05.002
Khalaj, O., Azizian, M., Darabi, N. J., Tafreshi, S. N. M., & Jirková, H. (2020). The role of expanded polystyrene and geocell in enhancing the behavior of buried HDPE pipes under trench loading using numerical analyses. Geosciences (Switzerland), 10(7), 1–15. https://doi.org/10.3390/geosciences10070251
Khalaj, O., Joz, N., Moghaddas, S. N., & Mašek, B. (2017). Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement. IOP Conference Series: Earth and Environmental Science, 95(2). https://doi.org/10.1088/1755- 1315/95/2/022030
Kliszczewicz, B. (2013). Numerical 3D Analysis of Buried Flexible Pipeline. European Scientific Journal, 9(36), 93–101. http://eujournal.org/index.php/esj/article/view/2214
Lozada, C., Garzón, L. X., & Campagnoli, S. X. (2021). Geotechnical centrifuge application in the teaching of applied soil mechanics. Educación En Ingeniería, 10(20), 1–2.
Mahgoub, A., & El Naggar, H. (2020). Coupled TDA–Geocell Stress-Bridging System for Buried Corrugated Metal Pipes. Journal of Geotechnical and Geoenvironmental Engineering, 146(7), 04020052. https://doi.org/10.1061/(asce)gt.1943- 5606.0002279
Ma, Q., Ku, Z., Xiao, H., 2019. Model tests of earth pressure on buried rigid pipes and flexible pipes underneath expanded polystyrene (EPS). Adv. Civ. Eng. 2019, 13. https://doi.org/10.1155/2019/9156129.
Mahgoub, A., & El Naggar, H. (2019). Using TDA as an Engineered Stress-Reduction Fill over Preexisting Buried Pipes. Journal of Pipeline Systems Engineering and Practice, 10(1), 04018034. https://doi.org/10.1061/(asce)ps.1949- 1204.0000362
Meguid, M. A., & Youssef, T. A. (2018). Experimental investigation of the earth pressure distribution on buried pipes backfilled with tire-derived aggregate. Transportation Geotechnics, 14, 117–125. https://doi.org/10.1016/j.trgeo.2017.11.007
Mill-Pro. (2019). Concrete encasement of flexible plastic pipes. Technical note. Mill-Pro, Hong Kong. http://millpro.com.hk/
Neves, J. B., Saboya, F., & Esquivel, E. R. (2021). Geotechnical centrifuge and numerical modelling of buried pipelines. International Journal of Physical Modelling in Geotechnics, 21(1), 18–25. https://doi.org/10.1680/jphmg.18.00092
Ordóñez, J. A. R., Valencia, D. M. R., Otero, A. C., & Ordóñez, M. P. (2007). Análisis mediante modelos físicos de interacción suelo-estructura en tuberías enterradas. Ingeniería 17(1), 61–76.
Park, J., Chung, Y., & Hong, G. (2020). Reinforcement effect of a concrete mat to prevent ground collapses due to buried pipe damage. Applied Sciences (Switzerland), 10(16). https://doi.org/10.3390/APP10165439
Pires, A. C. G., & Palmeira, E. M. (2021). The influence of geosynthetic reinforcement on the mechanical behaviour of soil-pipe systems. Geotextiles and Geomembranes, 49(5), 1117–1128. https://doi.org/10.1016/j.geotexmem.2021.03.006
Rakitin, B., & Ming, X. (2016). Centrifuge Modeling of Large Diameter Underground Pipes Subjected To Heavy Traffic Loads. Bulletin of South Ural State University Series “Construction Engineering and Architecture,” 16(3), 31–46. https://doi.org/10.14529/build160305
Rakitin, B., & Xu, M. (2015). Centrifuge testing to simulate buried reinforced concrete pipe joints subjected to traffic loading. Canadian Geotechnical Journal, 52(11), 1762–1774. https://doi.org/10.1139/cgj-2014-0483
Saboya, F. A., Santiago, P. de A. C., Martins, R. R., Tibana, S., Ramires, R. S., & Araruna, J. T. (2012). Centrifuge Test to Evaluate the Geotechnical Performance of Anchored Buried Pipelines in Sand. Journal of Pipeline Systems Engineering and Practice, 3(3), 84–97. https://doi.org/10.1061/(asce)ps.1949-1204.0000105
Saboya, F., Tibana, S., Reis, R. M., Durand, A., & Rangel, C. M. de A. (2020). Centrifuge and numerical modeling of moving traffic surface loads on pipelines buried in cohesionless soil. Transportation Geotechnics, 23(February), 100340. https://doi.org/10.1016/j.trgeo.2020.100340
Sharp, K. D., Anderson, L. R., Moser, A. P., & Bishop, R. R. (1985). Finite-Element Analysis Applied To the Response of Buried Frp Pipe Under Various Installation Conditions. Transportation Research Record, 63–72. https://doi.org/10.1016/0148-9062(86)90497-3
Si Xi, Z., Ying, W., & Peng, J. (2019). Reliability analysis of buried polyethylene pipeline subject to traffic loads. Advances in Mechanical Engineering, 11(10), 1–11. https://doi.org/10.1177/1687814019883785
Tavakoli, G., Moghaddas, S. N., & Dawson, A. R. (2015). Numerical analysis on buried pipes protected by combination of geocell reinforcement and rubber-soil mixture. International Journal of Civil Engineering, 13(2B), 90–104.
Quin, X. Wang, Y. (2021). Reliability-based design of rigid pipes installed by induced trench method with tire-derived aggregate inclusions. Computers and Geotechnics, Vol 140. https://doi.org/10.1016/j.compgeo.2021.104456.
Xia, Y., Jiang, N., Zhou, C., Meng, X., Luo, X., & Wu, T. (2021). Theoretical solution of the vibration response of the buried flexible HDPE pipe under impact load induced by rock blasting. Soil Dynamics and Earthquake Engineering, 146. https://doi.org/10.1016/j.soildyn.2021.106743
Yang, C., & Li, S. (2021). Theoretical analysis and finite element simulation of pipeline structure in liquefied soil. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e07480
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.