Identificación De Ocurrencia De Incendios Forestales En Áreas De Protección Colombia Entre Los Años 2021-2022: Análisis A Partir Del Procesamiento De Datos Geográficos
DOI:
https://doi.org/10.47185/27113760.v5n1.135Palabras clave:
Incendios, Áreas protegidas, Sostenibilidad ambiental., GIS, SINAP, FIRMSResumen
Colombia es uno de los cinco países con mayor diversidad biológica a nivel internacional y debe gestionar eficazmente zonas terrestres, marinas, sistemas nacionales y regionales de áreas protegidas completos. Un área protegida es un territorio designado por su singularidad en valores naturales y su preservación está a cargo del Sistema Nacional de Áreas Protegidas (SINAP). No obstante, existen zonas que pueden ser afectadas por incendios forestales de origen natural o provocados por el hombre. Simultáneamente, entidades como la NASA se dedican a recolectar información a partir de diferentes satélites y generar información accesible a cualquier usuario para realizar análisis cruzados. En ese trabajo se toman datos geoespaciales de las áreas protegidas y se cruzan con los mapas de incendios disponibles en la NASA para identificar cuáles regiones de Colombia tienen mayor propensión a ser afectadas y como trabajo futuro se propone priorizar diferentes políticas orientadas a sostenibilidad ambiental.
Descargas
Citas
Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, 10(3). https://doi.org/10.1155/2014/597368
Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar Bernal, F., & Bolaño-Ortiz, T. R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire, 5(6). https://doi.org/10.3390/fire5060191
Bontempi, A., Venturi, P., Del Bene, D., Scheidel, A., Zaldo-Aubanell, Q., & Zaragoza, R. M. (2023). Conflict and conservation: On the role of protected areas for environmental justice. Global Environmental Change, 82. https://doi.org/10.1016/j.gloenvcha.2023.102740
Brown, M., & Jenkins, J. S. (2023). Wildfire-driven entry closures influence visitor displacement and spending to alternative park entrance corridors and gateway communities around Yosemite National Park. Journal of Outdoor Recreation and Tourism, 43. https://doi.org/10.1016/j.jort.2023.100675
D., A.-P., J., R.-A., R., M.-H., M., R.-C. R., F., G.-A., & M., M.-R. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002
Da Ponte, E., Alcasena, F., Bhagwat, T., Hu, Z., Eufemia, L., Dias Turetta, A. P., Bonatti, M., Sieber, S., & Barr, P. L. (2023). Assessing wildfire activity and forest loss in protected areas of the Amazon basin. Applied Geography, 157. https://doi.org/10.1016/j.apgeog.2023.102970
da Silva, T. F. M. R. (2024). The effect of fire-induced forest-degradation on rainfall: a causal inference analysis of the case of the Brazilian Amazon. World Development Sustainability, 100162. https://doi.org/10.1016/j.wds.2024.100162
Denham, M. M., Waidelich, S., & Laneri, K. (2022). Visualization and modeling of forest fire propagation in Patagonia. Environmental Modelling and Software, 158(February), 105526. https://doi.org/10.1016/j.envsoft.2022.105526
Dhar, T., Bhatta, B., & Aravindan, S. (2023). Forest fire occurrence, distribution and risk mapping using geoinformation technology: A case study in the sub-tropical forest of the Meghalaya, India. Remote Sensing Applications: Society and Environment, 29. https://doi.org/10.1016/j.rsase.2022.100883
Fernández-Méndez, F., Velasco-Salcedo, V. M., Guerrero-Contecha, J., Galvis, M., & Neri, A. V. (2016). Recuperación ecológica de áreas afectadas por un incendio forestal en la microcuenca tintales (Boyacá, Colombia). Colombia Forestal, 19(2), 143–160. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.2.a02
Forests and the Future: A Crisis Raging Out of Control, WWF—World Wide Fund for Nature: Gland, Switzerland ___ (2020). https://wwf.panda.org/discover/our_focus/forests_practice/forest_publications_news_and_reports/fires_forests/
Fromont, C., Carriere, S., Bedecarrats, F., Razafrindakoto, M., & Rouband, F. (2024). Long-term socio-environmental monitoring of protected areas is a persistent weak point in developing countries: Literature review and recommendations. Biological Conservation, 290. https://doi.org/10.1016/j.biocon.2023.110434
Gaudreau, J., Perez, L., & Drapeau, P. (2016). BorealFireSim: A GIS-based cellular automata model of wildfires for the boreal forest of Quebec in a climate change paradigm. Ecological Informatics, 32, 12–27. https://doi.org/10.1016/j.ecoinf.2015.12.006
Hardy, C. C. (2005). Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology and Management, 211(1–2), 73–82. https://doi.org/10.1016/j.foreco.2005.01.029
Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., & Escobar, J. (2017). The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001
NASA-FIRMS. (2010). NRT VIIRS 375 m Active Fire product VNP14IMGT distributed from NASA FIRMS. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/doi:10.5067/VIIRS/VJ214IMG_NRT.002
Ocampo-Zuleta, K., & Beltrán-Vargas, J. (2018). Dynamic modeling of forest fires in the eastern hills of Bogota, Colombia. Madera Bosques, 24(3), 1–20. https://doi.org/10.21829/myb.2018.2431662
Parhizkar, M., & Cerdà, A. (2023). Modelling effects of human-caused fires on rill detachment capacity based on surface burning of soils in forest lands. Journal of Hydrology, 624. https://doi.org/10.1016/j.jhydrol.2023.129893
Pereira, G., Longo, K. M., Freitas, S. R., Mataveli, G., Oliveira, V. J., Santos, P. R., Rodrigues, L. F., & Cardozo, F. S. (2022). Improving the south America wildfires smoke estimates: Integration of polar-orbiting and geostationary satellite fire products in the Brazilian biomass burning emission model (3BEM). Atmospheric Environment, 273(January). https://doi.org/10.1016/j.atmosenv.2022.118954
Saout, L., S., H., M., S., Y., H., A., B., C., B., M., T., & Rodrigues, A. S. (2013). Protected Areas and Effective Biodiversity Conservation. Science, 342(6160), 803–805.
Stephens, S. L. (2005). Forest fire causes and extent on United States Forest Service lands. International Journal of Wildland Fire, 14(3), 213–222. https://doi.org/10.1071/WF04006
Stephens, S. L., Agee, J. K., Fulé, P. Z., North, M. P., Romme, W. H., Swetnam, T. W., & Turner, M. G. (2013). Managing forests and fire in changing climates. Science, 342, 41–42. https://doi.org/10.1126/science.1240294
Vanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K., Bonatti, M., & Castro-Nunez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land Use Policy, 114(January). https://doi.org/10.1016/j.landusepol.2022.105981
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Fernando Ceballos, Camila Vasquez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.