Virtual learning objects: A Sentiment Analysis
DOI:
https://doi.org/10.47185/27113760.v3n1.80Keywords:
Education, Sentiment Analysis, Text mining, Virtual Learning ObjectsAbstract
Virtual learning objects (VLO) are educational tools that seek to emulate a human teacher or tutor in their pedagogical and communicative skills. Their main advantage is that they can be reused and used anywhere from a mobile device or desktop computer, they encourage self-learning and are reusable. VLO have been developed in different areas of knowledge; exact and natural sciences, biology, medicine, economics and finance, social and human sciences, among others. In the context of the pandemic generated by COVID-19, VLO have been a very useful tool in the teaching-learning process
in universities. The objective of this research was to carry out a sentiment analysis to know the perception that people have about the use of VLO. We used 7,000 comments from the social network Twitter and RStudio software to process the
information. This paper concludes that, it is positive the perception identified in most of the comments, most of them were related to positive emotions. The massive implementation of the use of VLO can contribute to transform the traditional teaching-learning model and to strengthen remote education.
Downloads
References
Al-Natour, S., & Turetken, O. (2020). A comparative assessment of sentiment analysis and star ratings for consumer reviews. International Journal of Information Management, 54, 102132. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2020.10213
Atif, Y., Benlamri, R., & Berri, J. (2003). Learning objects based framework for self-adaptive learning. Education and Information Technologies, 8(4), 345-368. https://doi.org/10.1023/B:EAIT.0000008676.64018.af
Beltrán-Penagos, M. A., Martínez Pérez, L. F., & Ramírez Martínez, J.E. (2017). Comunidad de aprendizaje con el uso de MOOC sobre CSC en la formación permanente de profesores. Revista Interamericana de Investigación, Educación y Pedagogía, RIIEP, 10(1), 231–254. https://doi.org/10.15332/s1657-107x.2017.0001.10
Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134
Brown, M., Taylor, M., Hall, C., & Konstantinidis, S. (2019). Strengths, weaknesses, opportunities and threats for using reusable learning objects in European healthcare curricula to enhance cultural sensitivity, 13th International Technology, Education and Development Conference, 1-10 http://dx.doi.org/10.21125/inted.2019.2112
Caligaris, M. G., Rodríguez, G. B., & Laugero, L. F. (2013). Learning Objects for Numerical Analysis Courses. ProcediaSocial and Behavioral Sciences, 106, 1778-1785. https://doi.org/10.1016/j.sbspro.2013.12.200
Catelli, R., Pelosi, S., & Esposito, M. (2022). Lexicon-based vs. Bert-based sentiment analysis: A comparative study in Italian. Electronics, 11(3), 374. https://doi.org/10.3390/electronics11030374
Chiappe, L, A. (2006). Modelo de diseño instruccional basado en objetos de aprendizaje (MDIBOA): Aspectos relevantes. Universidad de la Sabana. Colomé, D.M., Estrada, V., & Febles, J.P. (2012). Technological environment for the creation of learning objects to support the teaching-learning process of Cuban universities. ACIMED, 23(2), 116-129. https://acortar.link/8GUF2w
De la Torre, N. L. M. & Domínguez, G. J. (2012). ICT in the teaching-learning process based on learning objects. Revista Cubana de Informática Médica, 4(1), 1-15. https://www.medigraphic.com/pdfs/revcubinfmed/cim2012/cim121h.pdf EMOLEX (2021). NRC Word-Emotion Association Lexicon https://saifmohammad.com/WebPages/NRC-EmotionLexicon.htm
Fox, J., & Leanage, A. (2016). R and the Journal of Statistical Software. Journal of Statistical Software, 73, 1-13. https://doi.org/10.18637/jss.v073.i02
Hu, M., & Bing, L. (2004). Mining and summarizing customer reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168–77. https://doi.org/10.1145/1014052.1014073.
IEEE Learning Standard Technology Committee (IEEE/LTSC) (2004). IEEE Standard goes Learning Object Metadata. http://ltsc.ieee.org/wg12/
Kay, R. H., & Knaack, L. (2007). Evaluating the learning in learning objects. Open Learning: The Journal of Open, Distance and e-Learning, 22(1), 5-28. https://doi.org/10.1080/02680510601100135
Khan, E., Tarling, M., & Calder, I. (2019). Reusable learning objects for nurse education: development, evaluation, challenges and recommendations. British Journal of Nursing, 28(17), 1136-1143. https://doi.org/10.12968/bjon.2019.28.17.1136
Martin-Domingo, L., Martín, J. C., & Mandsberg, G. (2019). Social media as a resource for sentiment analysis of Airport Service Quality (ASQ). Journal of Air Transport Management, 78, 106–115. https://doi.org/10.1016/j.jairtraman.2019.01.004
Marrugo, I. M. F. (2016). Objetos virtuales de aprendizaje y el desarrollo de aprendizaje autónomo en el área de inglés. Praxis, 12(1), 63-77. http://dx.doi.org/10.21676/23897856.1848
Martín, M., Yolanda, L., Gutiérrez-Mendoza, L., Nieves, A., & Mary, L. (2016). Guía para el diseño de objetos virtuales de aprendizaje (OVA). Aplicación al proceso enseñanzaaprendizaje del área bajo la curva de cálculo integral. Revista Científica General José María Córdova, 14(18), 127-147. http://www.recimundo.com/index.php/es/article/view/371
Martínez-Palmera, O., Combita-Niño, H., & De-La-HozFranco, E. (2018). Mediation of virtual learning objects in the development of mathematical competences in engineering students. Formación Universitaria, 11(6), 63–74. https://doi.org/10.4067/S0718-50062018000600063
Mascare, D., & Cabedo, J. (2014). Virtual learning environment and academic outcomes: Empirical evidence for the teaching of Management Accounting. Revista de Contabilidad, 17(2), 108-115. https://doi.org/10.1016/j.rcsar.2013.08.003
Medina, J. M. C., Medina, I. I. S., & Rojas, F. R. (2016). Uso de objetos virtuales de aprendizaje ovas como estrategia de enseñanza – aprendizaje inclusivo y complementario a los cursos teóricos – prácticos. Revista Educación En Ingeniería, 11(22), 4–12. https://doi.org/10.26507/rei.v11n22.602
Molano Puentes, F. U., Alarcón-Aldana, A. C., & CallejasCuervo, M. (2019). Guía para el análisis de calidad de objetos virtuales de aprendizaje para educación básica y media en Colombia. Praxis & Saber, 9(21), 47–73. https://doi.org/10.19053/22160159.v9.n21.2018.8923
Motelet, O., & Baloian, N. A. (2005). Taking advantage of LOM semantics for supporting lesson authoring. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", 1159-1168). Springer, Berlin, Heidelberg.
Nielsen, F, A. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In CEUR Workshop Proceedings, 718:93–98. http://arxiv.org/abs/1103.2903.
Ochoa, X., & Duval, E. (2008). Relevance ranking metrics for learning objects. IEEE Transactions on learning technologies, 1(1), 34-48. https://doi.org/10.1109/TLT.2008.1
Onofrei, G., & Ferry, P. (2020). Reusable learning objects: a blended learning tool in teaching computer-aided design to engineering undergraduates. International Journal of Educational Management, 34(10), 1559-1575. https://doi.org/10.1108/IJEM-12-2019-0418
Otón, S., Ortiz, A., Hilera, J. R., Martínez, J. J., Barchino, R., Gutiérrez, J. M., Gutiérrez de Mesa, J. A. & De Marcos, L. (2008, November). The Integration of SQI in a reusable learning objects system: Advantages and Disadvantages. In Proceedings of the 10th International Conference on Information Integration and Web-based Applications & Services, 600-603. https://doi.org/10.1145/1497308.1497420
Pérez Rojas, A. (2014). Uso de objetos virtuales de aprendizaje (OVA) en ambiente B-learning y su incidencia en el desempeño académico del estudiante. https://repository.unab.edu.co/bitstream/handle/20.500.12749 /3098/2014_Tesis_Perez_Rojas_Alexander.pdf?sequence=1
Romero, E. D., & Bobkina, J. (2021). Exploring the perceived benefits and drawbacks of using multimodal learning objects in pre-service English teacher inverted instruction. Education and Information Technologies, 26(3), 2961-2980. https://doi.org/10.1007/s10639-020-10386-y
Rueda-Bermúdez, V. (2020). Método para la construcción de OVA como servicios web. https://repository.udem.edu.co/bitstream/handle/11407/6380/ T_MIS_466.pdf?sequence=2&isAllowed=y
TIOBE. (2017). The R programming language. https://www.tiobe.com/tiobe-index/r Vakhtina, E., & Palkova, Z. (2015). Didactic designing of learning objects. Engineering for Rural Development, 14, 661- 668. http://tf.llu.lv/conference/proceedings2015/Papers/107_Vakht ina.pdf
Wiley, D. A. (2000). Connecting learning objects to instructional design theory: A definition, a metaphor, and a taxonomy. The instructional use of learning objects, 2830(435), 1-35. http://reusability.org/read/chapters/wiley.doc.
Windle, R., & Wharrad, H. (2010). Reusable learning objects in health care education. Interprofessional e-learning and collaborative work: practices and technologies, 244-259. https://doi.org/10.4018/978-1-61520-889-0.ch020
Yao, F., & Wang, Y. (2020). Domain-specific sentiment analysis for tweets during hurricanes (DSSA-H): A domainadversarial neural-network-based approach. Computers, Environment and Urban Systems, 83, 101522. https://doi.org/10.1016/j.compenvurbsys.2020.101522
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.